My Art My Choice: Adversarial Protection Against Unruly AI
- URL: http://arxiv.org/abs/2309.03198v1
- Date: Wed, 6 Sep 2023 17:59:47 GMT
- Title: My Art My Choice: Adversarial Protection Against Unruly AI
- Authors: Anthony Rhodes, Ram Bhagat, Umur Aybars Ciftci, Ilke Demir
- Abstract summary: My Art My Choice (MAMC) aims to empower content owners by protecting their copyrighted materials from being utilized by diffusion models.
MAMC learns to generate adversarially perturbed "protected" versions of images which can in turn "break" diffusion models.
- Score: 1.2380394017076968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative AI is on the rise, enabling everyone to produce realistic content
via publicly available interfaces. Especially for guided image generation,
diffusion models are changing the creator economy by producing high quality low
cost content. In parallel, artists are rising against unruly AI, since their
artwork are leveraged, distributed, and dissimulated by large generative
models. Our approach, My Art My Choice (MAMC), aims to empower content owners
by protecting their copyrighted materials from being utilized by diffusion
models in an adversarial fashion. MAMC learns to generate adversarially
perturbed "protected" versions of images which can in turn "break" diffusion
models. The perturbation amount is decided by the artist to balance distortion
vs. protection of the content. MAMC is designed with a simple UNet-based
generator, attacking black box diffusion models, combining several losses to
create adversarial twins of the original artwork. We experiment on three
datasets for various image-to-image tasks, with different user control values.
Both protected image and diffusion output results are evaluated in visual,
noise, structure, pixel, and generative spaces to validate our claims. We
believe that MAMC is a crucial step for preserving ownership information for AI
generated content in a flawless, based-on-need, and human-centric way.
Related papers
- DiffusionGuard: A Robust Defense Against Malicious Diffusion-based Image Editing [93.45507533317405]
DiffusionGuard is a robust and effective defense method against unauthorized edits by diffusion-based image editing models.
We introduce a novel objective that generates adversarial noise targeting the early stage of the diffusion process.
We also introduce a mask-augmentation technique to enhance robustness against various masks during test time.
arXiv Detail & Related papers (2024-10-08T05:19:19Z) - Pixel Is Not A Barrier: An Effective Evasion Attack for Pixel-Domain Diffusion Models [9.905296922309157]
Diffusion Models have emerged as powerful generative models for high-quality image synthesis, with many subsequent image editing techniques based on them.
Previous works have attempted to safeguard images from diffusion-based editing by adding imperceptible perturbations.
Our work proposes a novel attacking framework with a feature representation attack loss that exploits vulnerabilities in denoising UNets and a latent optimization strategy to enhance the naturalness of protected images.
arXiv Detail & Related papers (2024-08-21T17:56:34Z) - Safeguard Text-to-Image Diffusion Models with Human Feedback Inversion [51.931083971448885]
We propose a framework named Human Feedback Inversion (HFI), where human feedback on model-generated images is condensed into textual tokens guiding the mitigation or removal of problematic images.
Our experimental results demonstrate our framework significantly reduces objectionable content generation while preserving image quality, contributing to the ethical deployment of AI in the public sphere.
arXiv Detail & Related papers (2024-07-17T05:21:41Z) - DiffAM: Diffusion-based Adversarial Makeup Transfer for Facial Privacy Protection [60.73609509756533]
DiffAM is a novel approach to generate high-quality protected face images with adversarial makeup transferred from reference images.
Experiments demonstrate that DiffAM achieves higher visual quality and attack success rates with a gain of 12.98% under black-box setting.
arXiv Detail & Related papers (2024-05-16T08:05:36Z) - A Dataset and Benchmark for Copyright Infringement Unlearning from Text-to-Image Diffusion Models [52.49582606341111]
Copyright law confers creators the exclusive rights to reproduce, distribute, and monetize their creative works.
Recent progress in text-to-image generation has introduced formidable challenges to copyright enforcement.
We introduce a novel pipeline that harmonizes CLIP, ChatGPT, and diffusion models to curate a dataset.
arXiv Detail & Related papers (2024-01-04T11:14:01Z) - Towards Safe Self-Distillation of Internet-Scale Text-to-Image Diffusion
Models [63.20512617502273]
We propose a method called SDD to prevent problematic content generation in text-to-image diffusion models.
Our method eliminates a much greater proportion of harmful content from the generated images without degrading the overall image quality.
arXiv Detail & Related papers (2023-07-12T07:48:29Z) - DiffProtect: Generate Adversarial Examples with Diffusion Models for
Facial Privacy Protection [64.77548539959501]
DiffProtect produces more natural-looking encrypted images than state-of-the-art methods.
It achieves significantly higher attack success rates, e.g., 24.5% and 25.1% absolute improvements on the CelebA-HQ and FFHQ datasets.
arXiv Detail & Related papers (2023-05-23T02:45:49Z) - Towards Prompt-robust Face Privacy Protection via Adversarial Decoupling
Augmentation Framework [20.652130361862053]
We propose the Adversarial Decoupling Augmentation Framework (ADAF) to enhance the defensive performance of facial privacy protection algorithms.
ADAF introduces multi-level text-related augmentations for defense stability against various attacker prompts.
arXiv Detail & Related papers (2023-05-06T09:00:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.