CoNeS: Conditional neural fields with shift modulation for multi-sequence MRI translation
- URL: http://arxiv.org/abs/2309.03320v3
- Date: Wed, 20 Mar 2024 16:10:27 GMT
- Title: CoNeS: Conditional neural fields with shift modulation for multi-sequence MRI translation
- Authors: Yunjie Chen, Marius Staring, Olaf M. Neve, Stephan R. Romeijn, Erik F. Hensen, Berit M. Verbist, Jelmer M. Wolterink, Qian Tao,
- Abstract summary: Multi-sequence magnetic resonance imaging (MRI) has found wide applications in both modern clinical studies and deep learning research.
It frequently occurs that one or more of the MRI sequences are missing due to different image acquisition protocols or contrast agent contraindications of patients.
One promising approach is to leverage generative models to synthesize the missing sequences, which can serve as a surrogate acquisition.
- Score: 5.662694302758443
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-sequence magnetic resonance imaging (MRI) has found wide applications in both modern clinical studies and deep learning research. However, in clinical practice, it frequently occurs that one or more of the MRI sequences are missing due to different image acquisition protocols or contrast agent contraindications of patients, limiting the utilization of deep learning models trained on multi-sequence data. One promising approach is to leverage generative models to synthesize the missing sequences, which can serve as a surrogate acquisition. State-of-the-art methods tackling this problem are based on convolutional neural networks (CNN) which usually suffer from spectral biases, resulting in poor reconstruction of high-frequency fine details. In this paper, we propose Conditional Neural fields with Shift modulation (CoNeS), a model that takes voxel coordinates as input and learns a representation of the target images for multi-sequence MRI translation. The proposed model uses a multi-layer perceptron (MLP) instead of a CNN as the decoder for pixel-to-pixel mapping. Hence, each target image is represented as a neural field that is conditioned on the source image via shift modulation with a learned latent code. Experiments on BraTS 2018 and an in-house clinical dataset of vestibular schwannoma patients showed that the proposed method outperformed state-of-the-art methods for multi-sequence MRI translation both visually and quantitatively. Moreover, we conducted spectral analysis, showing that CoNeS was able to overcome the spectral bias issue common in conventional CNN models. To further evaluate the usage of synthesized images in clinical downstream tasks, we tested a segmentation network using the synthesized images at inference.
Related papers
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - Enhancing CT Image synthesis from multi-modal MRI data based on a
multi-task neural network framework [16.864720020158906]
We propose a versatile multi-task neural network framework, based on an enhanced Transformer U-Net architecture.
We decompose the traditional problem of synthesizing CT images into distinct subtasks.
To enhance the framework's versatility in handling multi-modal data, we expand the model with multiple image channels.
arXiv Detail & Related papers (2023-12-13T18:22:38Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Conversion Between CT and MRI Images Using Diffusion and Score-Matching
Models [7.745729132928934]
We propose to use an emerging deep learning framework called diffusion and score-matching models.
Our results show that the diffusion and score-matching models generate better synthetic CT images than the CNN and GAN models.
Our study suggests that diffusion and score-matching models are powerful to generate high quality images conditioned on an image obtained using a complementary imaging modality.
arXiv Detail & Related papers (2022-09-24T23:50:54Z) - Multi-Modal MRI Reconstruction with Spatial Alignment Network [51.74078260367654]
In clinical practice, magnetic resonance imaging (MRI) with multiple contrasts is usually acquired in a single study.
Recent researches demonstrate that, considering the redundancy between different contrasts or modalities, a target MRI modality under-sampled in the k-space can be better reconstructed with the helps from a fully-sampled sequence.
In this paper, we integrate the spatial alignment network with reconstruction, to improve the quality of the reconstructed target modality.
arXiv Detail & Related papers (2021-08-12T08:46:35Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z) - ResViT: Residual vision transformers for multi-modal medical image
synthesis [0.0]
We propose a novel generative adversarial approach for medical image synthesis, ResViT, to combine local precision of convolution operators with contextual sensitivity of vision transformers.
Our results indicate the superiority of ResViT against competing methods in terms of qualitative observations and quantitative metrics.
arXiv Detail & Related papers (2021-06-30T12:57:37Z) - Diffusion-Weighted Magnetic Resonance Brain Images Generation with
Generative Adversarial Networks and Variational Autoencoders: A Comparison
Study [55.78588835407174]
We show that high quality, diverse and realistic-looking diffusion-weighted magnetic resonance images can be synthesized using deep generative models.
We present two networks, the Introspective Variational Autoencoder and the Style-Based GAN, that qualify for data augmentation in the medical field.
arXiv Detail & Related papers (2020-06-24T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.