Quantum Graph-State Synthesis with SAT
- URL: http://arxiv.org/abs/2309.03593v2
- Date: Fri, 25 Oct 2024 11:50:27 GMT
- Title: Quantum Graph-State Synthesis with SAT
- Authors: Sebastiaan Brand, Tim Coopmans, Alfons Laarman,
- Abstract summary: We present a CNF encoding for both local and non-local graph state operations.
We use this encoding in a bounded-model-checking set-up to synthesize the desired transformation.
We find that the approach is able to synthesize transformations for graphs up to 17 qubits in under 30 minutes.
- Score: 0.0
- License:
- Abstract: In quantum computing and quantum information processing, graph states are a specific type of quantum states which are commonly used in quantum networking and quantum error correction. A recurring problem is finding a transformation from a given source graph state to a desired target graph state using only local operations. Recently it has been shown that deciding transformability is already NP-hard. In this paper, we present a CNF encoding for both local and non-local graph state operations, corresponding to one- and two-qubit Clifford gates and single-qubit Pauli measurements. We use this encoding in a bounded-model-checking set-up to synthesize the desired transformation. Additionally, for a completeness threshold on local transformations, we provide an upper bound on the length of the transformation if it exists. We evaluate the approach in two settings: the first is the synthesis of the ubiquitous GHZ state from a random graph state where we can vary the number of qubits, while the second is based on a proposed 14 node quantum network. We find that the approach is able to synthesize transformations for graphs up to 17 qubits in under 30 minutes.
Related papers
- The Quantum Esscher Transform [0.0]
We study the generalization of the Esscher Transform to the quantum setting.
We discuss potential applications of the quantum Esscher Transform.
Our algorithm is based on the modern techniques of block-encoding and quantum singular value transformation.
arXiv Detail & Related papers (2024-01-15T09:53:40Z) - Efficient parallelization of quantum basis state shift [0.0]
We optimize the state shift algorithm by incorporating the shift in different directions in parallel.
This provides a significant reduction in the depth of the quantum circuit in comparison to the currently known methods.
We focus on the one-dimensional and periodic shift, but note that the method can be extended to more complex cases.
arXiv Detail & Related papers (2023-04-04T11:01:08Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Compilation of algorithm-specific graph states for quantum circuits [55.90903601048249]
We present a quantum circuit compiler that prepares an algorithm-specific graph state from quantum circuits described in high level languages.
The computation can then be implemented using a series of non-Pauli measurements on this graph state.
arXiv Detail & Related papers (2022-09-15T14:52:31Z) - Quantum State Transfer: Interplay between Gate and Readout Errors [0.0]
We simulate quantum state transfer between two nodes connected in a linear geometry through other nodes.
We find that the nominal success probability is not necessarily a monotonic function of the two error rates.
arXiv Detail & Related papers (2022-09-15T03:22:40Z) - Approximate encoding of quantum states using shallow circuits [0.0]
A common requirement of quantum simulations and algorithms is the preparation of complex states through sequences of 2-qubit gates.
Here, we aim at creating an approximate encoding of the target state using a limited number of gates.
Our work offers a universal method to prepare target states using local gates and represents a significant improvement over known strategies.
arXiv Detail & Related papers (2022-06-30T18:00:04Z) - Probing phases of quantum matter with an ion-trap tensor-network quantum
eigensolver [1.291175895836647]
We encode a TN ansatz state directly into a quantum simulator, which can potentially offer an exponential advantage over purely numerical simulation.
In particular, we demonstrate the optimization of a quantum-encoded TN ansatz state using a variational quantum eigensolver on an ion-trap quantum computer.
arXiv Detail & Related papers (2022-03-24T18:00:19Z) - Determining ground-state phase diagrams on quantum computers via a
generalized application of adiabatic state preparation [61.49303789929307]
We use a local adiabatic ramp for state preparation to allow us to directly compute ground-state phase diagrams on a quantum computer via time evolution.
We are able to calculate an accurate phase diagram on both two and three site systems using IBM quantum machines.
arXiv Detail & Related papers (2021-12-08T23:59:33Z) - Benchmarking Small-Scale Quantum Devices on Computing Graph Edit
Distance [52.77024349608834]
Graph Edit Distance (GED) measures the degree of (dis)similarity between two graphs in terms of the operations needed to make them identical.
In this paper we present a comparative study of two quantum approaches to computing GED.
arXiv Detail & Related papers (2021-11-19T12:35:26Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.