BNS-Net: A Dual-channel Sarcasm Detection Method Considering
Behavior-level and Sentence-level Conflicts
- URL: http://arxiv.org/abs/2309.03658v1
- Date: Thu, 7 Sep 2023 11:55:11 GMT
- Title: BNS-Net: A Dual-channel Sarcasm Detection Method Considering
Behavior-level and Sentence-level Conflicts
- Authors: Liming Zhou and Xiaowei Xu and Xiaodong Wang
- Abstract summary: Sarcasm detection is a binary classification task that aims to determine whether a given utterance is sarcastic.
We propose a dual-channel sarcasm detection model named BNS-Net.
BNS-Net effectively identifies sarcasm in text and achieves the state-of-the-art performance.
- Score: 7.864536423561251
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sarcasm detection is a binary classification task that aims to determine
whether a given utterance is sarcastic. Over the past decade, sarcasm detection
has evolved from classical pattern recognition to deep learning approaches,
where features such as user profile, punctuation and sentiment words have been
commonly employed for sarcasm detection. In real-life sarcastic expressions,
behaviors without explicit sentimental cues often serve as carriers of implicit
sentimental meanings. Motivated by this observation, we proposed a dual-channel
sarcasm detection model named BNS-Net. The model considers behavior and
sentence conflicts in two channels. Channel 1: Behavior-level Conflict Channel
reconstructs the text based on core verbs while leveraging the modified
attention mechanism to highlight conflict information. Channel 2:
Sentence-level Conflict Channel introduces external sentiment knowledge to
segment the text into explicit and implicit sentences, capturing conflicts
between them. To validate the effectiveness of BNS-Net, several comparative and
ablation experiments are conducted on three public sarcasm datasets. The
analysis and evaluation of experimental results demonstrate that the BNS-Net
effectively identifies sarcasm in text and achieves the state-of-the-art
performance.
Related papers
- Detecting Emotional Incongruity of Sarcasm by Commonsense Reasoning [32.5690489394632]
This paper focuses on sarcasm detection, which aims to identify whether given statements convey criticism, mockery, or other negative sentiment opposite to the literal meaning.
Existing methods lack commonsense inferential ability when they face complex real-world scenarios, leading to unsatisfactory performance.
We propose a novel framework for sarcasm detection, which conducts incongruity reasoning based on commonsense augmentation, called EICR.
arXiv Detail & Related papers (2024-12-17T11:25:55Z) - Sentiment-enhanced Graph-based Sarcasm Explanation in Dialogue [63.32199372362483]
We propose a novel sEntiment-enhanceD Graph-based multimodal sarcasm Explanation framework, named EDGE.
In particular, we first propose a lexicon-guided utterance sentiment inference module, where a utterance sentiment refinement strategy is devised.
We then develop a module named Joint Cross Attention-based Sentiment Inference (JCA-SI) by extending the multimodal sentiment analysis model JCA to derive the joint sentiment label for each video-audio clip.
arXiv Detail & Related papers (2024-02-06T03:14:46Z) - Sarcasm Detection Framework Using Emotion and Sentiment Features [62.997667081978825]
We propose a model which incorporates emotion and sentiment features to capture the incongruity intrinsic to sarcasm.
Our approach achieved state-of-the-art results on four datasets from social networking platforms and online media.
arXiv Detail & Related papers (2022-11-23T15:14:44Z) - How to Describe Images in a More Funny Way? Towards a Modular Approach
to Cross-Modal Sarcasm Generation [62.89586083449108]
We study a new problem of cross-modal sarcasm generation (CMSG), i.e., generating a sarcastic description for a given image.
CMSG is challenging as models need to satisfy the characteristics of sarcasm, as well as the correlation between different modalities.
We propose an Extraction-Generation-Ranking based Modular method (EGRM) for cross-model sarcasm generation.
arXiv Detail & Related papers (2022-11-20T14:38:24Z) - Towards Multi-Modal Sarcasm Detection via Hierarchical Congruity
Modeling with Knowledge Enhancement [31.97249246223621]
Sarcasm is a linguistic phenomenon indicating a discrepancy between literal meanings and implied intentions.
Most existing techniques only modeled the atomic-level inconsistencies between the text input and its accompanying image.
We propose a novel hierarchical framework for sarcasm detection by exploring both the atomic-level congruity based on multi-head cross attention mechanism and the composition-level congruity based on graph neural networks.
arXiv Detail & Related papers (2022-10-07T12:44:33Z) - DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings [51.274478128525686]
DiffCSE is an unsupervised contrastive learning framework for learning sentence embeddings.
Our experiments show that DiffCSE achieves state-of-the-art results among unsupervised sentence representation learning methods.
arXiv Detail & Related papers (2022-04-21T17:32:01Z) - Multi-Modal Sarcasm Detection Based on Contrastive Attention Mechanism [7.194040730138362]
We construct a Contras-tive-Attention-based Sarcasm Detection (ConAttSD) model, which uses an inter-modality contrastive attention mechanism to extract contrastive features for an utterance.
Our experiments on MUStARD, a benchmark multi-modal sarcasm dataset, demonstrate the effectiveness of the proposed ConAttSD model.
arXiv Detail & Related papers (2021-09-30T14:17:51Z) - Sarcasm Detection: A Comparative Study [1.7725414095035827]
Sarcasm detection is the task of identifying irony containing utterances in sentiment-bearing text.
This article compiles and reviews the salient work in the literature of automatic sarcasm detection.
arXiv Detail & Related papers (2021-07-05T21:20:29Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
We propose adversarial self-supervision UDA (or ASSUDA) that maximizes the agreement between clean images and their adversarial examples by a contrastive loss in the output space.
This paper is rooted in two observations: (i) the robustness of UDA methods in semantic segmentation remains unexplored, which pose a security concern in this field; and (ii) although commonly used self-supervision (e.g., rotation and jigsaw) benefits image tasks such as classification and recognition, they fail to provide the critical supervision signals that could learn discriminative representation for segmentation tasks.
arXiv Detail & Related papers (2021-05-23T01:50:44Z) - Bi-ISCA: Bidirectional Inter-Sentence Contextual Attention Mechanism for
Detecting Sarcasm in User Generated Noisy Short Text [8.36639545285691]
This paper proposes a new state-of-the-art deep learning architecture that uses a novel Bidirectional Inter-Sentence Contextual Attention mechanism (Bi-ISCA)
Bi-ISCA captures inter-sentence dependencies for detecting sarcasm in the user-generated short text using only the conversational context.
The proposed deep learning model demonstrates the capability to capture explicit, implicit, and contextual incongruous words & phrases responsible for invoking sarcasm.
arXiv Detail & Related papers (2020-11-23T15:24:27Z) - $R^3$: Reverse, Retrieve, and Rank for Sarcasm Generation with
Commonsense Knowledge [51.70688120849654]
We propose an unsupervised approach for sarcasm generation based on a non-sarcastic input sentence.
Our method employs a retrieve-and-edit framework to instantiate two major characteristics of sarcasm.
arXiv Detail & Related papers (2020-04-28T02:30:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.