USA: Universal Sentiment Analysis Model & Construction of Japanese
Sentiment Text Classification and Part of Speech Dataset
- URL: http://arxiv.org/abs/2309.03787v2
- Date: Thu, 14 Sep 2023 05:53:45 GMT
- Title: USA: Universal Sentiment Analysis Model & Construction of Japanese
Sentiment Text Classification and Part of Speech Dataset
- Authors: Chengguang Gan, Qinghao Zhang, Tatsunori Mori
- Abstract summary: This paper proposes enhancing performance by leveraging the Mutual Reinforcement Effect(MRE) between individual words and the overall text.
To support our research, we annotated four novel Sentiment Text Classification and Part of Speech(SCPOS) datasets.
Furthermore, we developed a Universal Sentiment Analysis(USA) model, with a 7-billion parameter size.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sentiment analysis is a pivotal task in the domain of natural language
processing. It encompasses both text-level sentiment polarity classification
and word-level Part of Speech(POS) sentiment polarity determination. Such
analysis challenges models to understand text holistically while also
extracting nuanced information. With the rise of Large Language Models(LLMs),
new avenues for sentiment analysis have opened. This paper proposes enhancing
performance by leveraging the Mutual Reinforcement Effect(MRE) between
individual words and the overall text. It delves into how word polarity
influences the overarching sentiment of a passage. To support our research, we
annotated four novel Sentiment Text Classification and Part of Speech(SCPOS)
datasets, building upon existing sentiment classification datasets.
Furthermore, we developed a Universal Sentiment Analysis(USA) model, with a
7-billion parameter size. Experimental results revealed that our model
surpassed the performance of gpt-3.5-turbo across all four datasets,
underscoring the significance of MRE in sentiment analysis.
Related papers
- Lexicon-Based Sentiment Analysis on Text Polarities with Evaluation of Classification Models [1.342834401139078]
This work uses a lexicon-based method to perform sentiment analysis and shows an evaluation of classification models trained over textual data.
The lexicon-based methods identify the intensity of emotion and subjectivity at word levels.
This work is based on a multi-class problem of text being labeled as positive, negative, or neutral.
arXiv Detail & Related papers (2024-09-19T15:31:12Z) - Evaluating Contextualized Representations of (Spanish) Ambiguous Words: A New Lexical Resource and Empirical Analysis [2.2530496464901106]
We evaluate semantic representations of Spanish ambiguous nouns in context in a suite of Spanish-language monolingual and multilingual BERT-based models.
We find that various BERT-based LMs' contextualized semantic representations capture some variance in human judgments but fall short of the human benchmark.
arXiv Detail & Related papers (2024-06-20T18:58:11Z) - SOUL: Towards Sentiment and Opinion Understanding of Language [96.74878032417054]
We propose a new task called Sentiment and Opinion Understanding of Language (SOUL)
SOUL aims to evaluate sentiment understanding through two subtasks: Review (RC) and Justification Generation (JG)
arXiv Detail & Related papers (2023-10-27T06:48:48Z) - DiaASQ : A Benchmark of Conversational Aspect-based Sentiment Quadruple
Analysis [84.80347062834517]
We introduce DiaASQ, aiming to detect the quadruple of target-aspect-opinion-sentiment in a dialogue.
We manually construct a large-scale high-quality DiaASQ dataset in both Chinese and English languages.
We develop a neural model to benchmark the task, which advances in effectively performing end-to-end quadruple prediction.
arXiv Detail & Related papers (2022-11-10T17:18:20Z) - Aspect Sentiment Quad Prediction as Paraphrase Generation [53.33072918744124]
We introduce the Aspect Sentiment Quad Prediction (ASQP) task, aiming to jointly detect all sentiment elements in quads for a given opinionated sentence.
We propose a novel textscParaphrase modeling paradigm to cast the ASQP task to a paraphrase generation process.
On the other hand, the semantics of the sentiment elements can be fully exploited by learning to generate them in the natural language form.
arXiv Detail & Related papers (2021-10-02T12:57:27Z) - Dialog speech sentiment classification for imbalanced datasets [7.84604505907019]
In this paper, we use single and bi-modal analysis of short dialog utterances and gain insights on the main factors that aid in sentiment detection.
We propose an architecture which uses a learning rate scheduler and different monitoring criteria and provides state-of-the-art results for the SWITCHBOARD imbalanced sentiment dataset.
arXiv Detail & Related papers (2021-09-15T11:43:04Z) - Structured Sentiment Analysis as Dependency Graph Parsing [5.174808367448261]
We argue that this division has become counterproductive and propose a new unified framework to remedy the situation.
We cast the structured sentiment problem as dependency graph parsing, where the nodes are spans of sentiment holders, targets and expressions, and the arcs are the relations between them.
arXiv Detail & Related papers (2021-05-30T11:19:46Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
We propose a weakly-supervised approach for aspect-based sentiment analysis.
We learn sentiment, aspect> joint topic embeddings in the word embedding space.
We then use neural models to generalize the word-level discriminative information.
arXiv Detail & Related papers (2020-10-13T21:33:24Z) - Survey on Visual Sentiment Analysis [87.20223213370004]
This paper reviews pertinent publications and tries to present an exhaustive overview of the field of Visual Sentiment Analysis.
The paper also describes principles of design of general Visual Sentiment Analysis systems from three main points of view.
A formalization of the problem is discussed, considering different levels of granularity, as well as the components that can affect the sentiment toward an image in different ways.
arXiv Detail & Related papers (2020-04-24T10:15:22Z) - A Deep Neural Framework for Contextual Affect Detection [51.378225388679425]
A short and simple text carrying no emotion can represent some strong emotions when reading along with its context.
We propose a Contextual Affect Detection framework which learns the inter-dependence of words in a sentence.
arXiv Detail & Related papers (2020-01-28T05:03:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.