Diamond quantum magnetometer with dc sensitivity of < 10 pT Hz$^{-1/2}$
toward measurement of biomagnetic field
- URL: http://arxiv.org/abs/2309.04093v1
- Date: Fri, 8 Sep 2023 03:12:32 GMT
- Title: Diamond quantum magnetometer with dc sensitivity of < 10 pT Hz$^{-1/2}$
toward measurement of biomagnetic field
- Authors: N. Sekiguchi, M. Fushimi, A. Yoshimura, C. Shinei, M. Miyakawa, T.
Taniguchi, T. Teraji, H. Abe, S. Onoda, T. Ohshima, M. Hatano, M. Sekino, T.
Iwasaki
- Abstract summary: We present a sensitive diamond quantum sensor with a magnetic field sensitivity of $9.4 pm 0.1mathrmpT/sqrtHz$ in a near-dc frequency range of 5 to 100Hz.
This sensor is based on the continuous-wave optically detected magnetic resonance of an ensemble of nitrogen-vacancy centers along the [111] direction in a diamond (111) single crystal.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a sensitive diamond quantum sensor with a magnetic field
sensitivity of $9.4 \pm 0.1~\mathrm{pT/\sqrt{Hz}}$ in a near-dc frequency range
of 5 to 100~Hz. This sensor is based on the continuous-wave optically detected
magnetic resonance of an ensemble of nitrogen-vacancy centers along the [111]
direction in a diamond (111) single crystal. The long $T_{2}^{\ast} \sim
2~\mathrm{\mu s}$ in our diamond and the reduced intensity noise in
laser-induced fluorescence result in remarkable sensitivity among diamond
quantum sensors. Based on an Allan deviation analysis, we demonstrate that a
sub-picotesla field of 0.3~pT is detectable by interrogating the magnetic field
for a few thousand seconds. The sensor head is compatible with various
practical applications and allows a minimum measurement distance of about 1~mm
from the sensing region. The proposed sensor facilitates the practical
application of diamond quantum sensors.
Related papers
- Ferrimagnetic Oscillator Magnetometer [0.0]
The device exhibits a fixed, calibration-free response governed by the electronmagnetic gyro ratio.
The device achieves a minimum sensitivity of 100 fT/$sqrttextHz$ to AC magnetic fields of unknown phase.
arXiv Detail & Related papers (2023-05-31T15:21:57Z) - Magnetic field imaging by hBN quantum sensor nanoarray [1.559812637550576]
We demonstrate high-spatial-resolution magnetic field imaging with a boron vacancy (V$_textB-$) defects array in hexagonal boron nitride with a few 10 nm thickness.
The sensor array allows us to visualize the magnetic field induced by the current in the wire with a spatial resolution beyond the diffraction limit.
arXiv Detail & Related papers (2023-01-30T03:54:19Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Fiber-coupled Diamond Magnetometry with an Unshielded 30
pT/$\sqrt{\textrm{Hz}}$ Sensitivity [0.0]
We present a fiber-coupled NVC magnetometer with an unshielded sensitivity of (30 $pm$ 10) pT/$sqrttextrmHz$ in a (10 - 500)-Hz frequency range.
This sensitivity is enabled by a relatively high green-to-red photon conversion efficiency, the use of a [100] bias field alignment, microwave and lock-in amplifier (LIA) parameter optimisation, as well as a balanced hyperfine excitation scheme.
The magnetometer is capable of detecting signals from sources such as a vacuum pump up to 2 m away, with
arXiv Detail & Related papers (2022-11-16T19:35:51Z) - DC Quantum Magnetometry Below the Ramsey Limit [68.8204255655161]
We demonstrate quantum sensing of dc magnetic fields that exceeds the sensitivity of conventional $Tast$-limited dc magnetometry by more than an order of magnitude.
We used nitrogen-vacancy centers in a diamond rotating at periods comparable to the spin coherence time, and characterize the dependence of magnetic sensitivity on measurement time and rotation speed.
arXiv Detail & Related papers (2022-03-27T07:32:53Z) - High-Field Magnetometry with Hyperpolarized Nuclear Spins [0.0]
We propose and demonstrate a high-field spin magnetometer constructed from an ensemble of hyperpolarized $13C$ nuclear spins in diamond.
For quantum sensing at 7T and a single crystal sample, we demonstrate spectral resolution better than 100 mHz.
This work points to interesting opportunities for microscale NMR chemical sensors constructed from hyperpolarized nanodiamonds.
arXiv Detail & Related papers (2021-12-22T01:33:07Z) - Investigation and comparison of measurement schemes in the low frequency
biosensing regime using solid-state defect centers [58.720142291102135]
Solid state defects in diamond make promising quantum sensors with high sensitivity andtemporal resolution.
Inhomogeneous broadening and drive amplitude variations have differing impacts on the sensitivity depending on the sensing scheme used.
We numerically investigate and compare the predicted sensitivity of schemes based on continuous-wave (CW) optically detected magnetic resonance (ODMR) spectroscopy, pi-pulse ODMR and Ramsey interferometry.
arXiv Detail & Related papers (2021-09-27T13:05:23Z) - Laser threshold magnetometry using green light absorption by diamond
nitrogen vacancies in an external cavity laser [52.77024349608834]
Nitrogen vacancy (NV) centers in diamond have attracted considerable recent interest for use in quantum sensing.
We show theoretical sensitivity to magnetic field on the pT/sqrt(Hz) level is possible using a diamond with an optimal density of NV centers.
arXiv Detail & Related papers (2021-01-22T18:58:05Z) - Diamond magnetometry and gradiometry towards subpicotesla DC field
measurement [2.405499311102098]
Nitrogen vacancy (NV) centers in diamond have developed into a powerful solid-state platform for compact quantum sensors.
We demonstrate high sensitivity NV ensemble based magnetic field measurements with low-intensity optical excitation.
arXiv Detail & Related papers (2020-12-31T16:46:39Z) - An integrated magnetometry platform with stackable waveguide-assisted
detection channels for sensing arrays [45.82374977939355]
We present a novel architecture which allows us to create NV$-$-centers a few nanometers below the diamond surface.
We experimentally verify the coupling efficiency, showcase the detection of magnetic resonance signals through the waveguides and perform first proof-of-principle experiments in magnetic field and temperature sensing.
In the future, our approach will enable the development of two-dimensional sensing arrays facilitating spatially and temporally correlated magnetometry.
arXiv Detail & Related papers (2020-12-04T12:59:29Z) - High-Frequency Gravitational-Wave Detection Using a Chiral Resonant
Mechanical Element and a Short Unstable Optical Cavity [59.66860395002946]
We suggest the measurement of the twist of a chiral mechanical element induced by a gravitational wave.
The induced twist rotates a flat optical mirror on top of this chiral element, leading to the deflection of an incident laser beam.
We estimate a gravitational wave strain sensitivity between 10-21/sqrtHz and 10-23/sqrtHz at around 10 kHz frequency.
arXiv Detail & Related papers (2020-07-15T20:09:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.