Parallel and Limited Data Voice Conversion Using Stochastic Variational
Deep Kernel Learning
- URL: http://arxiv.org/abs/2309.04420v1
- Date: Fri, 8 Sep 2023 16:32:47 GMT
- Title: Parallel and Limited Data Voice Conversion Using Stochastic Variational
Deep Kernel Learning
- Authors: Mohamadreza Jafaryani, Hamid Sheikhzadeh, Vahid Pourahmadi
- Abstract summary: This paper proposes a voice conversion method that works with limited data.
It is based on variational deep kernel learning (SVDKL)
It is possible to estimate non-smooth and more complex functions.
- Score: 2.5782420501870296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Typically, voice conversion is regarded as an engineering problem with
limited training data. The reliance on massive amounts of data hinders the
practical applicability of deep learning approaches, which have been
extensively researched in recent years. On the other hand, statistical methods
are effective with limited data but have difficulties in modelling complex
mapping functions. This paper proposes a voice conversion method that works
with limited data and is based on stochastic variational deep kernel learning
(SVDKL). At the same time, SVDKL enables the use of deep neural networks'
expressive capability as well as the high flexibility of the Gaussian process
as a Bayesian and non-parametric method. When the conventional kernel is
combined with the deep neural network, it is possible to estimate non-smooth
and more complex functions. Furthermore, the model's sparse variational
Gaussian process solves the scalability problem and, unlike the exact Gaussian
process, allows for the learning of a global mapping function for the entire
acoustic space. One of the most important aspects of the proposed scheme is
that the model parameters are trained using marginal likelihood optimization,
which considers both data fitting and model complexity. Considering the
complexity of the model reduces the amount of training data by increasing the
resistance to overfitting. To evaluate the proposed scheme, we examined the
model's performance with approximately 80 seconds of training data. The results
indicated that our method obtained a higher mean opinion score, smaller
spectral distortion, and better preference tests than the compared methods.
Related papers
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
We show that model selection for computation-aware GPs trained on 1.8 million data points can be done within a few hours on a single GPU.
As a result of this work, Gaussian processes can be trained on large-scale datasets without significantly compromising their ability to quantify uncertainty.
arXiv Detail & Related papers (2024-11-01T21:11:48Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Neural Operator Variational Inference based on Regularized Stein
Discrepancy for Deep Gaussian Processes [23.87733307119697]
We introduce Neural Operator Variational Inference (NOVI) for Deep Gaussian Processes.
NOVI uses a neural generator to obtain a sampler and minimizes the Regularized Stein Discrepancy in L2 space between the generated distribution and true posterior.
We demonstrate that the bias introduced by our method can be controlled by multiplying the divergence with a constant, which leads to robust error control and ensures the stability and precision of the algorithm.
arXiv Detail & Related papers (2023-09-22T06:56:35Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
We propose an efficient online approximate Bayesian inference algorithm for estimating the parameters of a nonlinear function from a potentially non-stationary data stream.
The method is based on the extended Kalman filter (EKF), but uses a novel low-rank plus diagonal decomposition of the posterior matrix.
In contrast to methods based on variational inference, our method is fully deterministic, and does not require step-size tuning.
arXiv Detail & Related papers (2023-05-31T03:48:49Z) - Deep Active Learning with Noise Stability [24.54974925491753]
Uncertainty estimation for unlabeled data is crucial to active learning.
We propose a novel algorithm that leverages noise stability to estimate data uncertainty.
Our method is generally applicable in various tasks, including computer vision, natural language processing, and structural data analysis.
arXiv Detail & Related papers (2022-05-26T13:21:01Z) - A hybrid data driven-physics constrained Gaussian process regression
framework with deep kernel for uncertainty quantification [21.972192114861873]
We propose a hybrid data driven-physics constrained Gaussian process regression framework.
We encode the physics knowledge with Boltzmann-Gibbs distribution and derive our model through maximum likelihood (ML) approach.
The proposed model achieves good results in high-dimensional problem, and correctly propagate the uncertainty, with very limited labelled data provided.
arXiv Detail & Related papers (2022-05-13T07:53:49Z) - RMFGP: Rotated Multi-fidelity Gaussian process with Dimension Reduction
for High-dimensional Uncertainty Quantification [12.826754199680474]
Multi-fidelity modelling enables accurate inference even when only a small set of accurate data is available.
By combining the realizations of the high-fidelity model with one or more low-fidelity models, the multi-fidelity method can make accurate predictions of quantities of interest.
This paper proposes a new dimension reduction framework based on rotated multi-fidelity Gaussian process regression and a Bayesian active learning scheme.
arXiv Detail & Related papers (2022-04-11T01:20:35Z) - A Variational Infinite Mixture for Probabilistic Inverse Dynamics
Learning [34.90240171916858]
We develop an efficient variational Bayes inference technique for infinite mixtures of probabilistic local models.
We highlight the model's power in combining data-driven adaptation, fast prediction and the ability to deal with discontinuous functions and heteroscedastic noise.
We use the learned models for online dynamics control of a Barrett-WAM manipulator, significantly improving the trajectory tracking performance.
arXiv Detail & Related papers (2020-11-10T16:15:13Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.