Regret-Optimal Federated Transfer Learning for Kernel Regression with Applications in American Option Pricing
- URL: http://arxiv.org/abs/2309.04557v2
- Date: Thu, 03 Oct 2024 14:08:12 GMT
- Title: Regret-Optimal Federated Transfer Learning for Kernel Regression with Applications in American Option Pricing
- Authors: Xuwei Yang, Anastasis Kratsios, Florian Krach, Matheus Grasselli, Aurelien Lucchi,
- Abstract summary: We propose an optimal iterative scheme for federated transfer learning, where a central planner has access to datasets.
Our objective is to minimize the cumulative deviation of the generated parameters $thetai(t)_t=0T$ across all $T$ iterations.
By leveraging symmetries within the regret-optimal algorithm, we develop a nearly regret $_optimal that runs with $mathcalO(Np2)$ fewer elementary operations.
- Score: 8.723136784230906
- License:
- Abstract: We propose an optimal iterative scheme for federated transfer learning, where a central planner has access to datasets ${\cal D}_1,\dots,{\cal D}_N$ for the same learning model $f_{\theta}$. Our objective is to minimize the cumulative deviation of the generated parameters $\{\theta_i(t)\}_{t=0}^T$ across all $T$ iterations from the specialized parameters $\theta^\star_{1},\ldots,\theta^\star_N$ obtained for each dataset, while respecting the loss function for the model $f_{\theta(T)}$ produced by the algorithm upon halting. We only allow for continual communication between each of the specialized models (nodes/agents) and the central planner (server), at each iteration (round). For the case where the model $f_{\theta}$ is a finite-rank kernel regression, we derive explicit updates for the regret-optimal algorithm. By leveraging symmetries within the regret-optimal algorithm, we further develop a nearly regret-optimal heuristic that runs with $\mathcal{O}(Np^2)$ fewer elementary operations, where $p$ is the dimension of the parameter space. Additionally, we investigate the adversarial robustness of the regret-optimal algorithm showing that an adversary which perturbs $q$ training pairs by at-most $\varepsilon>0$, across all training sets, cannot reduce the regret-optimal algorithm's regret by more than $\mathcal{O}(\varepsilon q \bar{N}^{1/2})$, where $\bar{N}$ is the aggregate number of training pairs. To validate our theoretical findings, we conduct numerical experiments in the context of American option pricing, utilizing a randomly generated finite-rank kernel.
Related papers
- A Proximal Modified Quasi-Newton Method for Nonsmooth Regularized Optimization [0.7373617024876725]
Lipschitz-of-$nabla f$.
$mathcalS_k|p$.
$mathcalS_k|p$.
$nabla f$.
$mathcalS_k|p$.
arXiv Detail & Related papers (2024-09-28T18:16:32Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Sharper Model-free Reinforcement Learning for Average-reward Markov
Decision Processes [21.77276136591518]
We develop provably efficient model-free reinforcement learning (RL) algorithms for Markov Decision Processes (MDPs)
In the simulator setting, we propose a model-free RL algorithm that finds an $epsilon$-optimal policy using $widetildeO left(fracSAmathrmsp(h*)epsilon2+fracS2Amathrmsp(h*)epsilon2right)$ samples.
arXiv Detail & Related papers (2023-06-28T17:43:19Z) - ReSQueing Parallel and Private Stochastic Convex Optimization [59.53297063174519]
We introduce a new tool for BFG convex optimization (SCO): a Reweighted Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density.
We develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings.
arXiv Detail & Related papers (2023-01-01T18:51:29Z) - An Optimal Stochastic Algorithm for Decentralized Nonconvex Finite-sum
Optimization [25.21457349137344]
We show a proof to show DEAREST requires at most $mathcal O(+sqrtmnLvarepsilon-2)$ first-order oracle (IFO) calls and $mathcal O(Lvarepsilon-2/sqrt1-lambda_W)$ communication rounds.
arXiv Detail & Related papers (2022-10-25T11:37:11Z) - Model Selection with Near Optimal Rates for Reinforcement Learning with
General Model Classes [27.361399036211694]
We address the problem of model selection for the finite horizon episodic Reinforcement Learning (RL) problem.
In the model selection framework, instead of $mathcalP*$, we are given $M$ nested families of transition kernels.
We show that textttARL-GEN obtains a regret of $TildemathcalO(d_mathcalE*H2+sqrtd_mathcalE* mathbbM* H2 T)$
arXiv Detail & Related papers (2021-07-13T05:00:38Z) - Randomized Exploration for Reinforcement Learning with General Value
Function Approximation [122.70803181751135]
We propose a model-free reinforcement learning algorithm inspired by the popular randomized least squares value iteration (RLSVI) algorithm.
Our algorithm drives exploration by simply perturbing the training data with judiciously chosen i.i.d. scalar noises.
We complement the theory with an empirical evaluation across known difficult exploration tasks.
arXiv Detail & Related papers (2021-06-15T02:23:07Z) - Bayesian Optimistic Optimisation with Exponentially Decaying Regret [58.02542541410322]
The current practical BO algorithms have regret bounds ranging from $mathcalO(fraclogNsqrtN)$ to $mathcal O(e-sqrtN)$, where $N$ is the number of evaluations.
This paper explores the possibility of improving the regret bound in the noiseless setting by intertwining concepts from BO and tree-based optimistic optimisation.
We propose the BOO algorithm, a first practical approach which can achieve an exponential regret bound with order $mathcal O(N-sqrt
arXiv Detail & Related papers (2021-05-10T13:07:44Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
Up to logarithmic factors the optimal excess population loss of any $(varepsilon,delta)$-differently private is $sqrtlog(d)/n + sqrtd/varepsilon n.$
We show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $sqrtlog(d)/n + (log(d)/varepsilon n)2/3.
arXiv Detail & Related papers (2021-03-02T06:53:44Z) - Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization [51.23789922123412]
We study online learning with bandit feedback (i.e. learner has access to only zeroth-order oracle) where cost/reward functions admit a "pseudo-1d" structure.
We show a lower bound of $min(sqrtdT, T3/4)$ for the regret of any algorithm, where $T$ is the number of rounds.
We propose a new algorithm sbcalg that combines randomized online gradient descent with a kernelized exponential weights method to exploit the pseudo-1d structure effectively.
arXiv Detail & Related papers (2021-02-15T08:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.