Towards Robust Blockchain Price Oracle: A Study on Human-Centric Node Selection Strategy and Incentive Mechanism
- URL: http://arxiv.org/abs/2309.04689v2
- Date: Wed, 16 Oct 2024 13:44:26 GMT
- Title: Towards Robust Blockchain Price Oracle: A Study on Human-Centric Node Selection Strategy and Incentive Mechanism
- Authors: Youquan Xian, Xueying Zeng, Hao Wu, Danping Yang, Peng Wang, Peng Liu,
- Abstract summary: oracle can obtain trusted real-time price information for financial applications such as payment and settlement, and asset valuation on the blockchain.
This paper proposes an anonymous node selection scheme that anonymously selects nodes with high reputations to participate in tasks.
Under the hypothesis of rational man, an incentive mechanism based on the Stackelberg game is proposed.
- Score: 6.524599041387636
- License:
- Abstract: As a trusted middleware connecting the blockchain and the real world, the blockchain oracle can obtain trusted real-time price information for financial applications such as payment and settlement, and asset valuation on the blockchain. However, the current oracle schemes face the dilemma of security and service quality in the process of node selection, and the implicit interest relationship in financial applications leads to a significant conflict of interest between the task publisher and the executor, which reduces the participation enthusiasm of both parties and system security. Therefore, this paper proposes an anonymous node selection scheme that anonymously selects nodes with high reputations to participate in tasks to ensure the security and service quality of nodes. Then, this paper also details the interest requirements and behavioral motives of all parties in the payment settlement and asset valuation scenarios. Under the hypothesis of rational man, an incentive mechanism based on the Stackelberg game is proposed. It can achieve equilibrium under the pursuit of the revenue of task publishers and executors, thereby ensuring the revenue of all types of users and improving the enthusiasm for participation. Finally, we verify the security of the proposed scheme through security analysis. The experimental results show that the proposed scheme can reduce the variance of obtaining price data by about 55\% while ensuring security, and meeting the revenue of all parties.
Related papers
- Efficient and Universally Accessible Cross-Chain Options without Upfront Holder Collateral [3.5562096606353215]
We present a protocol for efficient and universally accessible option trading.
Our protocol's universality allows for cross-chain options involving nearly $textitany$ assets on $textitany$ two different blockchains.
By introducing a guarantee from the option writer, our protocol removes the need of upfront collateral from holders.
arXiv Detail & Related papers (2024-10-21T07:43:20Z) - SPOQchain: Platform for Secure, Scalable, and Privacy-Preserving Supply Chain Tracing and Counterfeit Protection [46.68279506084277]
This work proposes SPOQchain, a novel blockchain-based platform that provides comprehensive traceability and originality verification.
It provides an analysis of privacy and security aspects, demonstrating the need and qualification of SPOQchain for the future of supply chain tracing.
arXiv Detail & Related papers (2024-08-30T07:15:43Z) - MEV Ecosystem Evolution From Ethereum 1.0 [6.151915040556504]
In traditional finance, there are possibilities to create values, e.g., arbitrage offers to create value from market inefficiencies or front-running offers to extract value for the participants having privileged roles.
Such opportunities are readily available in DeFi ecosystems, where diverse participants engage in financial activities.
In this survey, first, we show how lucrative such opportunities can be. Then, we discuss how protocolfollowing participants trying to capture such opportunities threaten to sabotage blockchain's performance.
Finally, we review the current state of research trying to restore trustlessness and decentralization to provide all DeFi participants with a fair marketplace
arXiv Detail & Related papers (2024-06-19T14:22:26Z) - DesTest: A Decentralised Testing Architecture for Improving Data Accuracy of Blockchain Oracle [5.64560868386402]
We introduce a new decentralized testing architecture (DesTest) that aims to improve data accuracy.
A blockchain oracle random secret testing mechanism is first proposed to enhance the monitoring and verification of nodes.
We successfully reduced the discrete entropy value of the acquired data and the real value of the data by 61.4%.
arXiv Detail & Related papers (2024-04-21T05:10:17Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Analyzing Reward Dynamics and Decentralization in Ethereum 2.0: An
Advanced Data Engineering Workflow and Comprehensive Datasets for
Proof-of-Stake Incentives [5.18461573800406]
Smart contract blockchain platform, Proof-of-Stake 2.0, guarantees precise execution of applications without third-party intervention.
Our study collects consensus reward data from the Beacon chain and conducts a comprehensive analysis of reward distribution and evolution.
To evaluate the degree of decentralization in PoS, we apply several inequality indices, including the Shannon entropy, the Gini Index, the Nakamoto Coefficient, and the Herfindahl-Hirschman Index (HHI)
arXiv Detail & Related papers (2024-02-17T02:40:00Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - A Trustworthy and Consistent Blockchain Oracle Scheme for Industrial Internet of Things [7.430160508879777]
This paper proposes a secure and reliable oracle scheme that can obtain high-quality off-chain data.
Specifically, we first design an oracle node selection algorithm based on Verifiable Random Function (VRF) and reputation mechanism.
Second, we propose a data filtering algorithm based on a sliding window to further improve the consistency of the collected data.
arXiv Detail & Related papers (2023-10-08T02:44:29Z) - Incentive-Aware Recommender Systems in Two-Sided Markets [49.692453629365204]
We propose a novel recommender system that aligns with agents' incentives while achieving myopically optimal performance.
Our framework models this incentive-aware system as a multi-agent bandit problem in two-sided markets.
Both algorithms satisfy an ex-post fairness criterion, which protects agents from over-exploitation.
arXiv Detail & Related papers (2022-11-23T22:20:12Z) - Regulation conform DLT-operable payment adapter based on trustless -
justified trust combined generalized state channels [77.34726150561087]
Economy of Things (EoT) will be based on software agents running on peer-to-peer trustless networks.
We give an overview of current solutions that differ in their fundamental values and technological possibilities.
We propose to combine the strengths of the crypto based, decentralized trustless elements with established and well regulated means of payment.
arXiv Detail & Related papers (2020-07-03T10:45:55Z) - Cost-Sensitive Portfolio Selection via Deep Reinforcement Learning [100.73223416589596]
We propose a cost-sensitive portfolio selection method with deep reinforcement learning.
Specifically, a novel two-stream portfolio policy network is devised to extract both price series patterns and asset correlations.
A new cost-sensitive reward function is developed to maximize the accumulated return and constrain both costs via reinforcement learning.
arXiv Detail & Related papers (2020-03-06T06:28:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.