Brain-inspired Evolutionary Architectures for Spiking Neural Networks
- URL: http://arxiv.org/abs/2309.05263v1
- Date: Mon, 11 Sep 2023 06:39:11 GMT
- Title: Brain-inspired Evolutionary Architectures for Spiking Neural Networks
- Authors: Wenxuan Pan, Feifei Zhao, Zhuoya Zhao, Yi Zeng
- Abstract summary: We explore efficient architectural optimization for Spiking Neural Networks (SNNs)
This paper evolves SNNs architecture by incorporating brain-inspired local modular structure and global cross- module connectivity.
We introduce an efficient multi-objective evolutionary algorithm based on a few-shot performance predictor, endowing SNNs with high performance, efficiency and low energy consumption.
- Score: 6.607406750195899
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The complex and unique neural network topology of the human brain formed
through natural evolution enables it to perform multiple cognitive functions
simultaneously. Automated evolutionary mechanisms of biological network
structure inspire us to explore efficient architectural optimization for
Spiking Neural Networks (SNNs). Instead of manually designed fixed
architectures or hierarchical Network Architecture Search (NAS), this paper
evolves SNNs architecture by incorporating brain-inspired local modular
structure and global cross-module connectivity. Locally, the brain
region-inspired module consists of multiple neural motifs with excitatory and
inhibitory connections; Globally, we evolve free connections among modules,
including long-term cross-module feedforward and feedback connections. We
further introduce an efficient multi-objective evolutionary algorithm based on
a few-shot performance predictor, endowing SNNs with high performance,
efficiency and low energy consumption. Extensive experiments on static datasets
(CIFAR10, CIFAR100) and neuromorphic datasets (CIFAR10-DVS, DVS128-Gesture)
demonstrate that our proposed model boosts energy efficiency, archiving
consistent and remarkable performance. This work explores brain-inspired neural
architectures suitable for SNNs and also provides preliminary insights into the
evolutionary mechanisms of biological neural networks in the human brain.
Related papers
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic chips with high energy efficiency.
We contribute a full-stack toolkit for pre-processing neuromorphic datasets, building deep SNNs, optimizing their parameters, and deploying SNNs on neuromorphic chips.
arXiv Detail & Related papers (2023-10-25T13:15:17Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Multi-scale Evolutionary Neural Architecture Search for Deep Spiking
Neural Networks [7.271032282434803]
We propose a Multi-Scale Evolutionary Neural Architecture Search (MSE-NAS) for Spiking Neural Networks (SNNs)
MSE-NAS evolves individual neuron operation, self-organized integration of multiple circuit motifs, and global connectivity across motifs through a brain-inspired indirect evaluation function, Representational Dissimilarity Matrices (RDMs)
The proposed algorithm achieves state-of-the-art (SOTA) performance with shorter simulation steps on static datasets and neuromorphic datasets.
arXiv Detail & Related papers (2023-04-21T05:36:37Z) - Biologically inspired structure learning with reverse knowledge
distillation for spiking neural networks [19.33517163587031]
Spiking neural networks (SNNs) have superb characteristics in sensory information recognition tasks due to their biological plausibility.
The performance of some current spiking-based models is limited by their structures which means either fully connected or too-deep structures bring too much redundancy.
This paper proposes an evolutionary-based structure construction method for constructing more reasonable SNNs.
arXiv Detail & Related papers (2023-04-19T08:41:17Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - A Self-adaptive Neuroevolution Approach to Constructing Deep Neural
Network Architectures Across Different Types [5.429458930060452]
We propose a self-adaptive neuroevolution (SANE) approach to automatically construct various lightweight Deep Neural Network (DNN) architectures for different tasks.
One of the key settings in SANE is the search space defined by cells and organs self-adapted to different DNN types.
SANE is able to self-adaptively adjust evolution exploration and exploitation to improve search efficiency.
arXiv Detail & Related papers (2022-11-27T07:40:25Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
We propose a novel brain network representation framework, namely BN-GNN, which searches for the optimal GNN architecture for each brain network.
Our proposed BN-GNN improves the performance of traditional GNNs on different brain network analysis tasks.
arXiv Detail & Related papers (2022-03-18T07:05:27Z) - Motif-topology and Reward-learning improved Spiking Neural Network for
Efficient Multi-sensory Integration [5.161352821775507]
We propose a Motif-topology and Reward-learning improved spiking neural network (MR-SNN) for efficient multi-sensory integration.
The experimental results showed higher accuracy and stronger robustness of the proposed MR-SNN than other conventional SNNs without using Motifs.
The proposed reward learning paradigm was biologically plausible and can better explain the cognitive McGurk effect caused by incongruent visual and auditory sensory signals.
arXiv Detail & Related papers (2022-02-11T02:07:44Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - A multi-agent model for growing spiking neural networks [0.0]
This project has explored rules for growing the connections between the neurons in Spiking Neural Networks as a learning mechanism.
Results in a simulation environment showed that for a given set of parameters it is possible to reach topologies that reproduce the tested functions.
This project also opens the door to the usage of techniques like genetic algorithms for obtaining the best suited values for the model parameters.
arXiv Detail & Related papers (2020-09-21T15:11:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.