MultIOD: Rehearsal-free Multihead Incremental Object Detector
- URL: http://arxiv.org/abs/2309.05334v3
- Date: Tue, 9 Apr 2024 13:54:48 GMT
- Title: MultIOD: Rehearsal-free Multihead Incremental Object Detector
- Authors: Eden Belouadah, Arnaud Dapogny, Kevin Bailly,
- Abstract summary: We propose MultIOD, a class-incremental object detector based on CenterNet.
We employ transfer learning between classes learned initially and those learned incrementally to tackle catastrophic forgetting.
Results show that our method outperforms state-of-the-art methods on two Pascal VOC datasets.
- Score: 17.236182938227163
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Class-Incremental learning (CIL) refers to the ability of artificial agents to integrate new classes as they appear in a stream. It is particularly interesting in evolving environments where agents have limited access to memory and computational resources. The main challenge of incremental learning is catastrophic forgetting, the inability of neural networks to retain past knowledge when learning a new one. Unfortunately, most existing class-incremental methods for object detection are applied to two-stage algorithms such as Faster-RCNN, and rely on rehearsal memory to retain past knowledge. We argue that those are not suitable in resource-limited environments, and more effort should be dedicated to anchor-free and rehearsal-free object detection. In this paper, we propose MultIOD, a class-incremental object detector based on CenterNet. Our contributions are: (1) we propose a multihead feature pyramid and multihead detection architecture to efficiently separate class representations, (2) we employ transfer learning between classes learned initially and those learned incrementally to tackle catastrophic forgetting, and (3) we use a class-wise non-max-suppression as a post-processing technique to remove redundant boxes. Results show that our method outperforms state-of-the-art methods on two Pascal VOC datasets, while only saving the model in its current state, contrary to other distillation-based counterparts.
Related papers
- Enhancing Visual Continual Learning with Language-Guided Supervision [76.38481740848434]
Continual learning aims to empower models to learn new tasks without forgetting previously acquired knowledge.
We argue that the scarce semantic information conveyed by the one-hot labels hampers the effective knowledge transfer across tasks.
Specifically, we use PLMs to generate semantic targets for each class, which are frozen and serve as supervision signals.
arXiv Detail & Related papers (2024-03-24T12:41:58Z) - Class Incremental Learning with Self-Supervised Pre-Training and
Prototype Learning [21.901331484173944]
We analyze the causes of catastrophic forgetting in class incremental learning.
We propose a two-stage learning framework with a fixed encoder and an incrementally updated prototype classifier.
Our method does not rely on preserved samples of old classes, is thus a non-exemplar based CIL method.
arXiv Detail & Related papers (2023-08-04T14:20:42Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - The Overlooked Classifier in Human-Object Interaction Recognition [82.20671129356037]
We encode the semantic correlation among classes into the classification head by initializing the weights with language embeddings of HOIs.
We propose a new loss named LSE-Sign to enhance multi-label learning on a long-tailed dataset.
Our simple yet effective method enables detection-free HOI classification, outperforming the state-of-the-arts that require object detection and human pose by a clear margin.
arXiv Detail & Related papers (2022-03-10T23:35:00Z) - Activation to Saliency: Forming High-Quality Labels for Unsupervised
Salient Object Detection [54.92703325989853]
We propose a two-stage Activation-to-Saliency (A2S) framework that effectively generates high-quality saliency cues.
No human annotations are involved in our framework during the whole training process.
Our framework reports significant performance compared with existing USOD methods.
arXiv Detail & Related papers (2021-12-07T11:54:06Z) - Incremental Embedding Learning via Zero-Shot Translation [65.94349068508863]
Current state-of-the-art incremental learning methods tackle catastrophic forgetting problem in traditional classification networks.
We propose a novel class-incremental method for embedding network, named as zero-shot translation class-incremental method (ZSTCI)
In addition, ZSTCI can easily be combined with existing regularization-based incremental learning methods to further improve performance of embedding networks.
arXiv Detail & Related papers (2020-12-31T08:21:37Z) - Two-Level Residual Distillation based Triple Network for Incremental
Object Detection [21.725878050355824]
We propose a novel incremental object detector based on Faster R-CNN to continuously learn from new object classes without using old data.
It is a triple network where an old model and a residual model as assistants for helping the incremental model learning on new classes without forgetting the previous learned knowledge.
arXiv Detail & Related papers (2020-07-27T11:04:57Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z) - Incremental Few-Shot Object Detection for Robotics [15.082365880914896]
Class-Incremental Few-Shot Object Detection (CI-FSOD) framework enables deep object detection network to perform effective continual learning from just few-shot samples.
Our framework is simple yet effective and outperforms the previous SOTA with a significant margin of 2.4 points in AP performance.
arXiv Detail & Related papers (2020-05-06T08:05:08Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
We propose a meta-learning approach that learns to reshape model gradients, such that information across incremental tasks is optimally shared.
In comparison to existing meta-learning methods, our approach is task-agnostic, allows incremental addition of new-classes and scales to high-capacity models for object detection.
arXiv Detail & Related papers (2020-03-17T13:40:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.