Gromov-Hausdorff Distances for Comparing Product Manifolds of Model
Spaces
- URL: http://arxiv.org/abs/2309.05678v1
- Date: Sat, 9 Sep 2023 11:17:06 GMT
- Title: Gromov-Hausdorff Distances for Comparing Product Manifolds of Model
Spaces
- Authors: Haitz Saez de Ocariz Borde, Alvaro Arroyo, Ismael Morales, Ingmar
Posner, Xiaowen Dong
- Abstract summary: We introduce a novel notion of distance between candidate latent geometries using the Gromov-Hausdorff distance from metric geometry.
We propose using a graph search space that uses the estimated Gromov-Hausdorff distances to search for the optimal latent geometry.
- Score: 21.97865037637575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies propose enhancing machine learning models by aligning the
geometric characteristics of the latent space with the underlying data
structure. Instead of relying solely on Euclidean space, researchers have
suggested using hyperbolic and spherical spaces with constant curvature, or
their combinations (known as product manifolds), to improve model performance.
However, there exists no principled technique to determine the best latent
product manifold signature, which refers to the choice and dimensionality of
manifold components. To address this, we introduce a novel notion of distance
between candidate latent geometries using the Gromov-Hausdorff distance from
metric geometry. We propose using a graph search space that uses the estimated
Gromov-Hausdorff distances to search for the optimal latent geometry. In this
work we focus on providing a description of an algorithm to compute the
Gromov-Hausdorff distance between model spaces and its computational
implementation.
Related papers
- (Deep) Generative Geodesics [57.635187092922976]
We introduce a newian metric to assess the similarity between any two data points.
Our metric leads to the conceptual definition of generative distances and generative geodesics.
Their approximations are proven to converge to their true values under mild conditions.
arXiv Detail & Related papers (2024-07-15T21:14:02Z) - Reconstructing the Geometry of Random Geometric Graphs [9.004991291124096]
Random geometric graphs are random graph models defined on metric spaces.
We show how to efficiently reconstruct the geometry of the underlying space from the sampled graph.
arXiv Detail & Related papers (2024-02-14T21:34:44Z) - Scaling Riemannian Diffusion Models [68.52820280448991]
We show that our method enables us to scale to high dimensional tasks on nontrivial manifold.
We model QCD densities on $SU(n)$ lattices and contrastively learned embeddings on high dimensional hyperspheres.
arXiv Detail & Related papers (2023-10-30T21:27:53Z) - Neural Latent Geometry Search: Product Manifold Inference via
Gromov-Hausdorff-Informed Bayesian Optimization [21.97865037637575]
We mathematically define this novel formulation and coin it as neural latent geometry search (NLGS)
We propose a novel notion of distance between candidate latent geometries based on the Gromov-Hausdorff distance from metric geometry.
We then design a graph search space based on the notion of smoothness between latent geometries and employ the calculated as an additional inductive bias.
arXiv Detail & Related papers (2023-09-09T14:29:22Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Short and Straight: Geodesics on Differentiable Manifolds [6.85316573653194]
In this work, we first analyse existing methods for computing length-minimising geodesics.
Second, we propose a model-based parameterisation for distance fields and geodesic flows on continuous manifold.
Third, we develop a curvature-based training mechanism, sampling and scaling points in regions of the manifold exhibiting larger values of the Ricci scalar.
arXiv Detail & Related papers (2023-05-24T15:09:41Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Unveiling the Latent Space Geometry of Push-Forward Generative Models [24.025975236316846]
Many deep generative models are defined as a push-forward of a Gaussian measure by a continuous generator, such as Generative Adversarial Networks (GANs) or Variational Auto-Encoders (VAEs)
This work explores the latent space of such deep generative models.
A key issue with these models is their tendency to output samples outside of the support of the target distribution when learning disconnected distributions.
arXiv Detail & Related papers (2022-07-21T15:29:35Z) - Finding Geometric Models by Clustering in the Consensus Space [61.65661010039768]
We propose a new algorithm for finding an unknown number of geometric models, e.g., homographies.
We present a number of applications where the use of multiple geometric models improves accuracy.
These include pose estimation from multiple generalized homographies; trajectory estimation of fast-moving objects.
arXiv Detail & Related papers (2021-03-25T14:35:07Z) - Switch Spaces: Learning Product Spaces with Sparse Gating [48.591045282317424]
We propose Switch Spaces, a data-driven approach for learning representations in product space.
We introduce sparse gating mechanisms that learn to choose, combine and switch spaces.
Experiments on knowledge graph completion and item recommendations show that the proposed switch space achieves new state-of-the-art performances.
arXiv Detail & Related papers (2021-02-17T11:06:59Z) - Ultrahyperbolic Representation Learning [13.828165530602224]
In machine learning, data is usually represented in a (flat) Euclidean space where distances between points are along straight lines.
We propose a representation living on a pseudo-Riemannian manifold of constant nonzero curvature.
We provide the necessary learning tools in this geometry and extend gradient-based optimization techniques.
arXiv Detail & Related papers (2020-07-01T03:49:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.