Self-Correlation and Cross-Correlation Learning for Few-Shot Remote
Sensing Image Semantic Segmentation
- URL: http://arxiv.org/abs/2309.05840v2
- Date: Fri, 15 Sep 2023 16:10:07 GMT
- Title: Self-Correlation and Cross-Correlation Learning for Few-Shot Remote
Sensing Image Semantic Segmentation
- Authors: Linhan Wang, Shuo Lei, Jianfeng He, Shengkun Wang, Min Zhang,
Chang-Tien Lu
- Abstract summary: Few-shot remote sensing semantic segmentation aims at learning to segment target objects from a query image.
We propose a Self-Correlation and Cross-Correlation Learning Network for the few-shot remote sensing image semantic segmentation.
Our model enhances the generalization by considering both self-correlation and cross-correlation between support and query images.
- Score: 27.59330408178435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote sensing image semantic segmentation is an important problem for remote
sensing image interpretation. Although remarkable progress has been achieved,
existing deep neural network methods suffer from the reliance on massive
training data. Few-shot remote sensing semantic segmentation aims at learning
to segment target objects from a query image using only a few annotated support
images of the target class. Most existing few-shot learning methods stem
primarily from their sole focus on extracting information from support images,
thereby failing to effectively address the large variance in appearance and
scales of geographic objects. To tackle these challenges, we propose a
Self-Correlation and Cross-Correlation Learning Network for the few-shot remote
sensing image semantic segmentation. Our model enhances the generalization by
considering both self-correlation and cross-correlation between support and
query images to make segmentation predictions. To further explore the
self-correlation with the query image, we propose to adopt a classical spectral
method to produce a class-agnostic segmentation mask based on the basic visual
information of the image. Extensive experiments on two remote sensing image
datasets demonstrate the effectiveness and superiority of our model in few-shot
remote sensing image semantic segmentation. Code and models will be accessed at
https://github.com/linhanwang/SCCNet.
Related papers
- IFSENet : Harnessing Sparse Iterations for Interactive Few-shot Segmentation Excellence [2.822194296769473]
Few-shot segmentation techniques reduce the required number of images to learn to segment a new class.
interactive segmentation techniques only focus on incrementally improving the segmentation of one object at a time.
We combine the two concepts to drastically reduce the effort required to train segmentation models for novel classes.
arXiv Detail & Related papers (2024-03-22T10:15:53Z) - Location-Aware Self-Supervised Transformers [74.76585889813207]
We propose to pretrain networks for semantic segmentation by predicting the relative location of image parts.
We control the difficulty of the task by masking a subset of the reference patch features visible to those of the query.
Our experiments show that this location-aware pretraining leads to representations that transfer competitively to several challenging semantic segmentation benchmarks.
arXiv Detail & Related papers (2022-12-05T16:24:29Z) - Object discovery and representation networks [78.16003886427885]
We propose a self-supervised learning paradigm that discovers the structure encoded in priors by itself.
Our method, Odin, couples object discovery and representation networks to discover meaningful image segmentations without any supervision.
arXiv Detail & Related papers (2022-03-16T17:42:55Z) - Remote Sensing Images Semantic Segmentation with General Remote Sensing
Vision Model via a Self-Supervised Contrastive Learning Method [13.479068312825781]
We propose Global style and Local matching Contrastive Learning Network (GLCNet) for remote sensing semantic segmentation.
Specifically, the global style contrastive module is used to learn an image-level representation better.
The local features matching contrastive module is designed to learn representations of local regions which is beneficial for semantic segmentation.
arXiv Detail & Related papers (2021-06-20T03:03:40Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
We introduce a self-supervised detection and segmentation approach that can work with single images captured by a potentially moving camera.
We exploit a self-supervised loss function that we exploit to train a proposal-based segmentation network.
We apply our method to human detection and segmentation in images that visually depart from those of standard benchmarks and outperform existing self-supervised methods.
arXiv Detail & Related papers (2020-11-11T08:34:40Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
Two neural co-attentions are incorporated into the classifier to capture cross-image semantic similarities and differences.
In addition to boosting object pattern learning, the co-attention can leverage context from other related images to improve localization map inference.
Our algorithm sets new state-of-the-arts on all these settings, demonstrating well its efficacy and generalizability.
arXiv Detail & Related papers (2020-07-03T21:53:46Z) - CRNet: Cross-Reference Networks for Few-Shot Segmentation [59.85183776573642]
Few-shot segmentation aims to learn a segmentation model that can be generalized to novel classes with only a few training images.
With a cross-reference mechanism, our network can better find the co-occurrent objects in the two images.
Experiments on the PASCAL VOC 2012 dataset show that our network achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-03-24T04:55:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.