Do Generative Large Language Models need billions of parameters?
- URL: http://arxiv.org/abs/2309.06589v1
- Date: Tue, 12 Sep 2023 20:25:22 GMT
- Title: Do Generative Large Language Models need billions of parameters?
- Authors: Sia Gholami, Marwan Omar
- Abstract summary: The research explores novel methods that allow different parts of the model to share parameters.
This approach ensures that the model remains compact without sacrificing its ability to learn and represent complex language structures.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents novel systems and methodologies for the development of
efficient large language models (LLMs). It explores the trade-offs between
model size, performance, and computational resources, with the aim of
maximizing the efficiency of these AI systems. The research explores novel
methods that allow different parts of the model to share parameters, reducing
the total number of unique parameters required. This approach ensures that the
model remains compact without sacrificing its ability to learn and represent
complex language structures. This study provides valuable insights and tools
for creating more efficient and effective LLMs, contributing to a more
sustainable and accessible future for AI language modeling.
Related papers
- A Survey of Small Language Models [104.80308007044634]
Small Language Models (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources.
We present a comprehensive survey on SLMs, focusing on their architectures, training techniques, and model compression techniques.
arXiv Detail & Related papers (2024-10-25T23:52:28Z) - EmbedLLM: Learning Compact Representations of Large Language Models [28.49433308281983]
We propose EmbedLLM, a framework designed to learn compact vector representations of Large Language Models.
We introduce an encoder-decoder approach for learning such embeddings, along with a systematic framework to evaluate their effectiveness.
Empirical results show that EmbedLLM outperforms prior methods in model routing both in accuracy and latency.
arXiv Detail & Related papers (2024-10-03T05:43:24Z) - InkubaLM: A small language model for low-resource African languages [9.426968756845389]
InkubaLM is a small language model with 0.4 billion parameters.
It achieves performance comparable to models with significantly larger parameter counts.
It demonstrates remarkable consistency across multiple languages.
arXiv Detail & Related papers (2024-08-30T05:42:31Z) - Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities [89.40778301238642]
Model merging is an efficient empowerment technique in the machine learning community.
There is a significant gap in the literature regarding a systematic and thorough review of these techniques.
arXiv Detail & Related papers (2024-08-14T16:58:48Z) - Mixture-of-Instructions: Comprehensive Alignment of a Large Language Model through the Mixture of Diverse System Prompting Instructions [7.103987978402038]
We introduce a novel technique termed Mixture-of-Instructions (MoI)
MoI employs a strategy of instruction concatenation combined with diverse system prompts to boost the alignment efficiency of language models.
Our methodology was applied to the open-source Qwen-7B-chat model, culminating in the development of Qwen-SFT-MoI.
arXiv Detail & Related papers (2024-04-29T03:58:12Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
Large-scale pre-trained language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks.
However, the massive size of these models poses huge challenges for their deployment in real-world applications.
We introduce a novel compression paradigm called Retrieval-based Knowledge Transfer (RetriKT) which effectively transfers the knowledge of LLMs to extremely small-scale models.
arXiv Detail & Related papers (2023-10-24T07:58:20Z) - RAVEN: In-Context Learning with Retrieval-Augmented Encoder-Decoder Language Models [57.12888828853409]
RAVEN is a model that combines retrieval-augmented masked language modeling and prefix language modeling.
Fusion-in-Context Learning enables the model to leverage more in-context examples without requiring additional training.
Our work underscores the potential of retrieval-augmented encoder-decoder language models for in-context learning.
arXiv Detail & Related papers (2023-08-15T17:59:18Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - Scalable and Efficient MoE Training for Multitask Multilingual Models [55.987536562357086]
We develop a system capable of scaling MoE models efficiently to trillions of parameters.
We also present new training methods to improve MoE sample efficiency and leverage expert pruning strategy to improve time efficiency.
A model trained with 10 billion parameters on 50 languages can achieve state-of-the-art performance in Machine Translation (MT) and multilingual natural language generation tasks.
arXiv Detail & Related papers (2021-09-22T00:57:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.