Reversibility of quantum resources through probabilistic protocols
- URL: http://arxiv.org/abs/2309.07206v3
- Date: Tue, 16 Apr 2024 06:06:27 GMT
- Title: Reversibility of quantum resources through probabilistic protocols
- Authors: Bartosz Regula, Ludovico Lami,
- Abstract summary: We show that it is possible to reversibly interconvert all states in general quantum resource theories.
Our methods are based on connecting the transformation rates under probabilistic protocols with strong converse rates for deterministic transformations.
- Score: 5.2178708158547025
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Among the most fundamental questions in the manipulation of quantum resources such as entanglement is the possibility of reversibly transforming all resource states. The key consequence of this would be the identification of a unique entropic resource measure that exactly quantifies the limits of achievable transformation rates. Remarkably, previous results claimed that such asymptotic reversibility holds true in very general settings; however, recently those findings have been found to be incomplete, casting doubt on the conjecture. Here we show that it is indeed possible to reversibly interconvert all states in general quantum resource theories, as long as one allows protocols that may only succeed probabilistically. Although such transformations have some chance of failure, we show that their success probability can be ensured to be bounded away from zero, even in the asymptotic limit of infinitely many manipulated copies. As in previously conjectured approaches, the achievability here is realised through operations that are asymptotically resource non-generating, and we show that this choice is optimal: smaller sets of transformations cannot lead to reversibility. Our methods are based on connecting the transformation rates under probabilistic protocols with strong converse rates for deterministic transformations, which we strengthen into an exact equivalence in the case of entanglement distillation.
Related papers
- Catalytic and asymptotic equivalence for quantum entanglement [68.8204255655161]
Many-copy entanglement manipulation procedures allow for highly entangled pure states from noisy states.
We show that using an entangled catalyst cannot enhance the singlet distillation rate of a distillable quantum state.
Our findings provide a comprehensive understanding of the capabilities and limitations of both catalytic and state transformations of entangled states.
arXiv Detail & Related papers (2023-05-05T12:57:59Z) - Functional analytic insights into irreversibility of quantum resources [8.37609145576126]
Quantum channels which preserve certain sets of states are contractive with respect to the base norms induced by those sets.
We show that there exist qutrit magic states that cannot be reversibly interconverted under stabiliser protocols.
arXiv Detail & Related papers (2022-11-28T19:00:00Z) - Real quantum operations and state transformations [44.99833362998488]
Resource theory of imaginarity provides a useful framework to understand the role of complex numbers.
In the first part of this article, we study the properties of real'' (quantum) operations in single-party and bipartite settings.
In the second part of this article, we focus on the problem of single copy state transformation via real quantum operations.
arXiv Detail & Related papers (2022-10-28T01:08:16Z) - Overcoming entropic limitations on asymptotic state transformations
through probabilistic protocols [12.461503242570641]
We show that it is no longer the case when one allows protocols that may only succeed with some probability.
We show that this is no longer the case when one allows protocols that may only succeed with some probability.
arXiv Detail & Related papers (2022-09-07T18:00:00Z) - Deterministic Gaussian conversion protocols for non-Gaussian single-mode
resources [58.720142291102135]
We show that cat and binomial states are approximately equivalent for finite energy, while this equivalence was previously known only in the infinite-energy limit.
We also consider the generation of cat states from photon-added and photon-subtracted squeezed states, improving over known schemes by introducing additional squeezing operations.
arXiv Detail & Related papers (2022-04-07T11:49:54Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Tight constraints on probabilistic convertibility of quantum states [0.0]
Two general approaches to characterising the manipulation of quantum states by means of probabilistic protocols constrained by the limitations of some quantum resource theory.
First, we give a general necessary condition for the existence of a physical transformation between quantum states, obtained using a recently introduced resource monotone based on the Hilbert projective metric.
We show it to tightly characterise single-shot probabilistic distillation in broad types of resource theories, allowing an exact analysis of the trade-offs between the probabilities and errors in distilling maximally resourceful states.
arXiv Detail & Related papers (2021-12-21T16:14:55Z) - Stochastic approximate state conversion for entanglement and general quantum resource theories [41.94295877935867]
An important problem in any quantum resource theory is to determine how quantum states can be converted into each other.
Very few results have been presented on the intermediate regime between probabilistic and approximate transformations.
We show that these bounds imply an upper bound on the rates for various classes of states under probabilistic transformations.
We also show that the deterministic version of the single copy bounds can be applied for drawing limitations on the manipulation of quantum channels.
arXiv Detail & Related papers (2021-11-24T17:29:43Z) - Probabilistic transformations of quantum resources [0.0]
We develop a new resource monotone that obeys a very strong type of monotonicity.
It can restrict all transformations, probabilistic or deterministic, between states in any quantum resource theory.
arXiv Detail & Related papers (2021-09-09T18:00:02Z) - Gaussian conversion protocols for cubic phase state generation [104.23865519192793]
Universal quantum computing with continuous variables requires non-Gaussian resources.
The cubic phase state is a non-Gaussian state whose experimental implementation has so far remained elusive.
We introduce two protocols that allow for the conversion of a non-Gaussian state to a cubic phase state.
arXiv Detail & Related papers (2020-07-07T09:19:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.