MC-NeRF: Multi-Camera Neural Radiance Fields for Multi-Camera Image Acquisition Systems
- URL: http://arxiv.org/abs/2309.07846v3
- Date: Fri, 22 Mar 2024 12:41:50 GMT
- Title: MC-NeRF: Multi-Camera Neural Radiance Fields for Multi-Camera Image Acquisition Systems
- Authors: Yu Gao, Lutong Su, Hao Liang, Yufeng Yue, Yi Yang, Mengyin Fu,
- Abstract summary: Neural Radiance Fields (NeRF) use multi-view images for 3D scene representation, demonstrating remarkable performance.
Most previous NeRF-based methods assume a unique camera and rarely consider multi-camera scenarios.
We propose MC-NeRF, a method that enables joint optimization of both intrinsic and extrinsic parameters alongside NeRF.
- Score: 22.494866649536018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Radiance Fields (NeRF) use multi-view images for 3D scene representation, demonstrating remarkable performance. As one of the primary sources of multi-view images, multi-camera systems encounter challenges such as varying intrinsic parameters and frequent pose changes. Most previous NeRF-based methods assume a unique camera and rarely consider multi-camera scenarios. Besides, some NeRF methods that can optimize intrinsic and extrinsic parameters still remain susceptible to suboptimal solutions when these parameters are poor initialized. In this paper, we propose MC-NeRF, a method that enables joint optimization of both intrinsic and extrinsic parameters alongside NeRF. The method also supports each image corresponding to independent camera parameters. First, we tackle coupling issue and the degenerate case that arise from the joint optimization between intrinsic and extrinsic parameters. Second, based on the proposed solutions, we introduce an efficient calibration image acquisition scheme for multi-camera systems, including the design of calibration object. Finally, we present an end-to-end network with training sequence that enables the estimation of intrinsic and extrinsic parameters, along with the rendering network. Furthermore, recognizing that most existing datasets are designed for a unique camera, we construct a real multi-camera image acquisition system and create a corresponding new dataset, which includes both simulated data and real-world captured images. Experiments confirm the effectiveness of our method when each image corresponds to different camera parameters. Specifically, we use multi-cameras, each with different intrinsic and extrinsic parameters in real-world system, to achieve 3D scene representation without providing initial poses.
Related papers
- OrientDream: Streamlining Text-to-3D Generation with Explicit Orientation Control [66.03885917320189]
OrientDream is a camera orientation conditioned framework for efficient and multi-view consistent 3D generation from textual prompts.
Our strategy emphasizes the implementation of an explicit camera orientation conditioned feature in the pre-training of a 2D text-to-image diffusion module.
Our experiments reveal that our method not only produces high-quality NeRF models with consistent multi-view properties but also achieves an optimization speed significantly greater than existing methods.
arXiv Detail & Related papers (2024-06-14T13:16:18Z) - CamP: Camera Preconditioning for Neural Radiance Fields [56.46526219931002]
NeRFs can be optimized to obtain high-fidelity 3D scene reconstructions of objects and large-scale scenes.
Extrinsic and intrinsic camera parameters are usually estimated using Structure-from-Motion (SfM) methods as a pre-processing step to NeRF.
We propose using a proxy problem to compute a whitening transform that eliminates the correlation between camera parameters and normalizes their effects.
arXiv Detail & Related papers (2023-08-21T17:59:54Z) - NeRFtrinsic Four: An End-To-End Trainable NeRF Jointly Optimizing
Diverse Intrinsic and Extrinsic Camera Parameters [7.165373389474194]
Novel view synthesis using neural radiance fields (NeRF) is the state-of-the-art technique for generating high-quality images from novel viewpoints.
Current research on the joint optimization of camera parameters and NeRF focuses on refining noisy extrinsic camera parameters.
We propose a novel end-to-end trainable approach called NeRFtrinsic Four to address these limitations.
arXiv Detail & Related papers (2023-03-16T15:44:31Z) - Multi-task Learning for Camera Calibration [3.274290296343038]
We present a unique method for predicting intrinsic (principal point offset and focal length) and extrinsic (baseline, pitch, and translation) properties from a pair of images.
By reconstructing the 3D points using a camera model neural network and then using the loss in reconstruction to obtain the camera specifications, this innovative camera projection loss (CPL) method allows us that the desired parameters should be estimated.
arXiv Detail & Related papers (2022-11-22T17:39:31Z) - Robustifying the Multi-Scale Representation of Neural Radiance Fields [86.69338893753886]
We present a robust multi-scale neural radiance fields representation approach to overcome both real-world imaging issues.
Our method handles multi-scale imaging effects and camera-pose estimation problems with NeRF-inspired approaches.
We demonstrate, with examples, that for an accurate neural representation of an object from day-to-day acquired multi-view images, it is crucial to have precise camera-pose estimates.
arXiv Detail & Related papers (2022-10-09T11:46:45Z) - Camera Calibration through Camera Projection Loss [4.36572039512405]
We propose a novel method to predict intrinsic (focal length and principal point offset) parameters using an image pair.
Unlike existing methods, we proposed a new representation that incorporates camera model equations as a neural network in multi-task learning framework.
Our proposed approach achieves better performance with respect to both deep learning-based and traditional methods on 7 out of 10 parameters evaluated.
arXiv Detail & Related papers (2021-10-07T14:03:10Z) - FLEX: Parameter-free Multi-view 3D Human Motion Reconstruction [70.09086274139504]
Multi-view algorithms strongly depend on camera parameters, in particular, the relative positions among the cameras.
We introduce FLEX, an end-to-end parameter-free multi-view model.
We demonstrate results on the Human3.6M and KTH Multi-view Football II datasets.
arXiv Detail & Related papers (2021-05-05T09:08:12Z) - DeepMultiCap: Performance Capture of Multiple Characters Using Sparse
Multiview Cameras [63.186486240525554]
DeepMultiCap is a novel method for multi-person performance capture using sparse multi-view cameras.
Our method can capture time varying surface details without the need of using pre-scanned template models.
arXiv Detail & Related papers (2021-05-01T14:32:13Z) - Infrastructure-based Multi-Camera Calibration using Radial Projections [117.22654577367246]
Pattern-based calibration techniques can be used to calibrate the intrinsics of the cameras individually.
Infrastucture-based calibration techniques are able to estimate the extrinsics using 3D maps pre-built via SLAM or Structure-from-Motion.
We propose to fully calibrate a multi-camera system from scratch using an infrastructure-based approach.
arXiv Detail & Related papers (2020-07-30T09:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.