HIVE: Scalable Hardware-Firmware Co-Verification using Scenario-based Decomposition and Automated Hint Extraction
- URL: http://arxiv.org/abs/2309.08002v2
- Date: Wed, 17 Apr 2024 00:39:42 GMT
- Title: HIVE: Scalable Hardware-Firmware Co-Verification using Scenario-based Decomposition and Automated Hint Extraction
- Authors: Aruna Jayasena, Prabhat Mishra,
- Abstract summary: Hardware-firmware co-verification is critical to design trustworthy systems.
There are promising avenues to reduce the state space during firmware verification through manual abstraction of hardware or manual generation of hints.
In this paper, we effectively combine the scalability of simulation-based validation and the completeness of formal verification.
- Score: 2.977255700811213
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hardware-firmware co-verification is critical to design trustworthy systems. While formal methods can provide verification guarantees, due to the complexity of firmware and hardware, it can lead to state space explosion. There are promising avenues to reduce the state space during firmware verification through manual abstraction of hardware or manual generation of hints. Manual development of abstraction or hints requires domain expertise and can be time-consuming and error-prone, leading to incorrect proofs or inaccurate results. In this paper, we effectively combine the scalability of simulation-based validation and the completeness of formal verification. Our proposed approach is applicable to actual firmware and hardware implementations without requiring any manual intervention during formal model generation or hint extraction. To reduce the state space complexity, we utilize both static module-level analysis and dynamic execution of verification scenarios to automatically generate system-level hints. These hints guide the underlying solver to perform scalable equivalence checking using proofs. The extracted hints are validated against the implementation before using them in the proofs. Experimental evaluation on RISC-V based systems demonstrates that our proposed framework is scalable due to scenario-based decomposition and automated hint extraction. Moreover, our fully automated framework can identify complex bugs in actual firmware-hardware implementations.
Related papers
- Analogous Alignments: Digital "Formally" meets Analog [0.0]
This paper focuses on the pragmatic formal verification of a mixed signal Intellectual Property (IP) that has a combination of digital and analog blocks.
Digital and Analog Mixed-Signal (AMS) designs, which are fundamentally different in nature, are integrated seamlessly in a formal verification setup.
arXiv Detail & Related papers (2024-09-23T13:38:31Z) - Designing and Implementing a Generator Framework for a SIMD Abstraction Library [53.84310825081338]
We present TSLGen, a novel end-to-end framework for generating an SIMD abstraction library.
We show that our framework is comparable to existing libraries, and we achieve the same performance results.
arXiv Detail & Related papers (2024-07-26T13:25:38Z) - Bisimulation Learning [55.859538562698496]
We compute finite bisimulations of state transition systems with large, possibly infinite state space.
Our technique yields faster verification results than alternative state-of-the-art tools in practice.
arXiv Detail & Related papers (2024-05-24T17:11:27Z) - Data-Driven Distributionally Robust Safety Verification Using Barrier Certificates and Conditional Mean Embeddings [0.24578723416255752]
We develop scalable formal verification algorithms without shifting the problem to unrealistic assumptions.
In a pursuit of developing scalable formal verification algorithms without shifting the problem to unrealistic assumptions, we employ the concept of barrier certificates.
We show how to solve the resulting program efficiently using sum-of-squares optimization and a Gaussian process envelope.
arXiv Detail & Related papers (2024-03-15T17:32:02Z) - Unsupervised Continual Anomaly Detection with Contrastively-learned
Prompt [80.43623986759691]
We introduce a novel Unsupervised Continual Anomaly Detection framework called UCAD.
The framework equips the UAD with continual learning capability through contrastively-learned prompts.
We conduct comprehensive experiments and set the benchmark on unsupervised continual anomaly detection and segmentation.
arXiv Detail & Related papers (2024-01-02T03:37:11Z) - Scaling #DNN-Verification Tools with Efficient Bound Propagation and
Parallel Computing [57.49021927832259]
Deep Neural Networks (DNNs) are powerful tools that have shown extraordinary results in many scenarios.
However, their intricate designs and lack of transparency raise safety concerns when applied in real-world applications.
Formal Verification (FV) of DNNs has emerged as a valuable solution to provide provable guarantees on the safety aspect.
arXiv Detail & Related papers (2023-12-10T13:51:25Z) - A General Framework for Verification and Control of Dynamical Models via Certificate Synthesis [54.959571890098786]
We provide a framework to encode system specifications and define corresponding certificates.
We present an automated approach to formally synthesise controllers and certificates.
Our approach contributes to the broad field of safe learning for control, exploiting the flexibility of neural networks.
arXiv Detail & Related papers (2023-09-12T09:37:26Z) - A Scalable Formal Verification Methodology for Data-Oblivious Hardware [3.518548208712866]
We propose a novel methodology to formally verify data-oblivious behavior in hardware using standard property checking techniques.
We show that proving this inductive property is sufficient to exhaustively verify data-obliviousness at the microarchitectural level.
One case study uncovered a data-dependent timing violation in the extensively verified and highly secure IBEX RISC-V core.
arXiv Detail & Related papers (2023-08-15T13:19:17Z) - (Security) Assertions by Large Language Models [25.270188328436618]
We investigate the use of emerging large language models (LLMs) for code generation in hardware assertion generation for security.
We focus our attention on a popular LLM and characterize its ability to write assertions out of the box, given varying levels of detail in the prompt.
arXiv Detail & Related papers (2023-06-24T17:44:36Z) - Relational Action Bases: Formalization, Effective Safety Verification,
and Invariants (Extended Version) [67.99023219822564]
We introduce the general framework of relational action bases (RABs)
RABs generalize existing models by lifting both restrictions.
We demonstrate the effectiveness of this approach on a benchmark of data-aware business processes.
arXiv Detail & Related papers (2022-08-12T17:03:50Z) - Fingerprint recognition with embedded presentation attacks detection:
are we ready? [6.0168714922994075]
The diffusion of fingerprint verification systems for security applications makes it urgent to investigate the embedding of software-based presentation attack algorithms (PAD) into such systems.
Current research did not state much about their effectiveness when embedded in fingerprint verification systems.
This paper proposes a performance simulator based on the probabilistic modeling of the relationships among the Receiver Operating Characteristics (ROC) of the two individual systems when PAD and verification stages are implemented sequentially.
arXiv Detail & Related papers (2021-10-20T13:53:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.