Enhancing Visual Perception in Novel Environments via Incremental Data
Augmentation Based on Style Transfer
- URL: http://arxiv.org/abs/2309.08851v1
- Date: Sat, 16 Sep 2023 03:06:31 GMT
- Title: Enhancing Visual Perception in Novel Environments via Incremental Data
Augmentation Based on Style Transfer
- Authors: Abhibha Gupta, Rully Agus Hendrawan, Mansur Arief
- Abstract summary: "unknown unknowns" challenge autonomous agent deployment in real-world scenarios.
Our approach enhances visual perception by leveraging the Variational Prototyping (VPE) to adeptly identify and handle novel inputs.
Our findings suggest the potential benefits of incorporating generative models for domain-specific augmentation strategies.
- Score: 2.516855334706386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The deployment of autonomous agents in real-world scenarios is challenged by
"unknown unknowns", i.e. novel unexpected environments not encountered during
training, such as degraded signs. While existing research focuses on anomaly
detection and class imbalance, it often fails to address truly novel scenarios.
Our approach enhances visual perception by leveraging the Variational
Prototyping Encoder (VPE) to adeptly identify and handle novel inputs, then
incrementally augmenting data using neural style transfer to enrich
underrepresented data. By comparing models trained solely on original datasets
with those trained on a combination of original and augmented datasets, we
observed a notable improvement in the performance of the latter. This
underscores the critical role of data augmentation in enhancing model
robustness. Our findings suggest the potential benefits of incorporating
generative models for domain-specific augmentation strategies.
Related papers
- A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - Comprehensive Exploration of Synthetic Data Generation: A Survey [4.485401662312072]
This work surveys 417 Synthetic Data Generation models over the last decade.
The findings reveal increased model performance and complexity, with neural network-based approaches prevailing.
Computer vision dominates, with GANs as primary generative models, while diffusion models, transformers, and RNNs compete.
arXiv Detail & Related papers (2024-01-04T20:23:51Z) - Implicit Counterfactual Data Augmentation for Robust Learning [24.795542869249154]
This study proposes an Implicit Counterfactual Data Augmentation method to remove spurious correlations and make stable predictions.
Experiments have been conducted across various biased learning scenarios covering both image and text datasets.
arXiv Detail & Related papers (2023-04-26T10:36:40Z) - Single-Shot Domain Adaptation via Target-Aware Generative Augmentation [21.17396588958938]
We argue that augmentations utilized by existing methods are insufficient to handle large distribution shifts.
We propose SiSTA (Single-Shot Target Augmentations), which first fine-tunes a generative model from the source domain using a single-shot target.
We find that SiSTA produces improvements as high as 20% over existing baselines under challenging shifts in face detection.
arXiv Detail & Related papers (2022-10-29T20:53:57Z) - Augmentation-Aware Self-Supervision for Data-Efficient GAN Training [68.81471633374393]
Training generative adversarial networks (GANs) with limited data is challenging because the discriminator is prone to overfitting.
We propose a novel augmentation-aware self-supervised discriminator that predicts the augmentation parameter of the augmented data.
We compare our method with state-of-the-art (SOTA) methods using the class-conditional BigGAN and unconditional StyleGAN2 architectures.
arXiv Detail & Related papers (2022-05-31T10:35:55Z) - The Imaginative Generative Adversarial Network: Automatic Data
Augmentation for Dynamic Skeleton-Based Hand Gesture and Human Action
Recognition [27.795763107984286]
We present a novel automatic data augmentation model, which approximates the distribution of the input data and samples new data from this distribution.
Our results show that the augmentation strategy is fast to train and can improve classification accuracy for both neural networks and state-of-the-art methods.
arXiv Detail & Related papers (2021-05-27T11:07:09Z) - Negative Data Augmentation [127.28042046152954]
We show that negative data augmentation samples provide information on the support of the data distribution.
We introduce a new GAN training objective where we use NDA as an additional source of synthetic data for the discriminator.
Empirically, models trained with our method achieve improved conditional/unconditional image generation along with improved anomaly detection capabilities.
arXiv Detail & Related papers (2021-02-09T20:28:35Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
Modern deep convolutional networks (CNNs) are often criticized for not generalizing under distributional shifts.
We study the interplay between out-of-distribution and transfer performance of modern image classification CNNs for the first time.
We find that increasing both the training set and model sizes significantly improve the distributional shift robustness.
arXiv Detail & Related papers (2020-07-16T18:39:04Z) - Generative Data Augmentation for Commonsense Reasoning [75.26876609249197]
G-DAUGC is a novel generative data augmentation method that aims to achieve more accurate and robust learning in the low-resource setting.
G-DAUGC consistently outperforms existing data augmentation methods based on back-translation.
Our analysis demonstrates that G-DAUGC produces a diverse set of fluent training examples, and that its selection and training approaches are important for performance.
arXiv Detail & Related papers (2020-04-24T06:12:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.