Active Learning for Semantic Segmentation with Multi-class Label Query
- URL: http://arxiv.org/abs/2309.09319v2
- Date: Mon, 6 Nov 2023 06:15:33 GMT
- Title: Active Learning for Semantic Segmentation with Multi-class Label Query
- Authors: Sehyun Hwang, Sohyun Lee, Hoyoung Kim, Minhyeon Oh, Jungseul Ok, Suha
Kwak
- Abstract summary: This paper proposes a new active learning method for semantic segmentation.
It introduces the class ambiguity issue in training as it assigns partial labels to individual pixels.
In the first stage, it trains a segmentation model directly with the partial labels.
In the second stage, it disambiguates the partial labels by generating pixel-wise pseudo labels.
- Score: 34.49769523529307
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper proposes a new active learning method for semantic segmentation.
The core of our method lies in a new annotation query design. It samples
informative local image regions (e.g., superpixels), and for each of such
regions, asks an oracle for a multi-hot vector indicating all classes existing
in the region. This multi-class labeling strategy is substantially more
efficient than existing ones like segmentation, polygon, and even dominant
class labeling in terms of annotation time per click. However, it introduces
the class ambiguity issue in training as it assigns partial labels (i.e., a set
of candidate classes) to individual pixels. We thus propose a new algorithm for
learning semantic segmentation while disambiguating the partial labels in two
stages. In the first stage, it trains a segmentation model directly with the
partial labels through two new loss functions motivated by partial label
learning and multiple instance learning. In the second stage, it disambiguates
the partial labels by generating pixel-wise pseudo labels, which are used for
supervised learning of the model. Equipped with a new acquisition function
dedicated to the multi-class labeling, our method outperforms previous work on
Cityscapes and PASCAL VOC 2012 while spending less annotation cost. Our code
and results are available at https://github.com/sehyun03/MulActSeg.
Related papers
- Zero-Shot Pseudo Labels Generation Using SAM and CLIP for Semi-Supervised Semantic Segmentation [0.0]
We propose a method to train a semantic segmentation model using images with annotated labels and pseudo labels.<n>The accuracy of the model depends on the quality of the pseudo labels and the amount of data with annotated labels.<n>The effectiveness of the proposed method is demonstrated through the experiments using the public datasets: PASCAL and MS COCO.
arXiv Detail & Related papers (2025-05-26T11:31:13Z) - Active Generalized Category Discovery [60.69060965936214]
Generalized Category Discovery (GCD) endeavors to cluster unlabeled samples from both novel and old classes.
We take the spirit of active learning and propose a new setting called Active Generalized Category Discovery (AGCD)
Our method achieves state-of-the-art performance on both generic and fine-grained datasets.
arXiv Detail & Related papers (2024-03-07T07:12:24Z) - Learning Semantic Segmentation with Query Points Supervision on Aerial Images [57.09251327650334]
We present a weakly supervised learning algorithm to train semantic segmentation algorithms.
Our proposed approach performs accurate semantic segmentation and improves efficiency by significantly reducing the cost and time required for manual annotation.
arXiv Detail & Related papers (2023-09-11T14:32:04Z) - Bridging the Gap between Model Explanations in Partially Annotated
Multi-label Classification [85.76130799062379]
We study how false negative labels affect the model's explanation.
We propose to boost the attribution scores of the model trained with partial labels to make its explanation resemble that of the model trained with full labels.
arXiv Detail & Related papers (2023-04-04T14:00:59Z) - Saliency Guided Inter- and Intra-Class Relation Constraints for Weakly
Supervised Semantic Segmentation [66.87777732230884]
We propose a saliency guided Inter- and Intra-Class Relation Constrained (I$2$CRC) framework to assist the expansion of the activated object regions.
We also introduce an object guided label refinement module to take a full use of both the segmentation prediction and the initial labels for obtaining superior pseudo-labels.
arXiv Detail & Related papers (2022-06-20T03:40:56Z) - Semantic Segmentation In-the-Wild Without Seeing Any Segmentation
Examples [34.97652735163338]
We propose a novel approach for creating semantic segmentation masks for every object.
Our method takes as input the image-level labels of the class categories present in the image.
The output of this stage provides pixel-level pseudo-labels, instead of the manual pixel-level labels required by supervised methods.
arXiv Detail & Related papers (2021-12-06T17:32:38Z) - Universal Weakly Supervised Segmentation by Pixel-to-Segment Contrastive
Learning [28.498782661888775]
We formulate weakly supervised segmentation as a semi-supervised metric learning problem.
We propose 4 types of contrastive relationships between pixels and segments in the feature space.
We deliver a universal weakly supervised segmenter with significant gains on Pascal VOC and DensePose.
arXiv Detail & Related papers (2021-05-03T15:49:01Z) - A Closer Look at Self-training for Zero-Label Semantic Segmentation [53.4488444382874]
Being able to segment unseen classes not observed during training is an important technical challenge in deep learning.
Prior zero-label semantic segmentation works approach this task by learning visual-semantic embeddings or generative models.
We propose a consistency regularizer to filter out noisy pseudo-labels by taking the intersections of the pseudo-labels generated from different augmentations of the same image.
arXiv Detail & Related papers (2021-04-21T14:34:33Z) - All Labels Are Not Created Equal: Enhancing Semi-supervision via Label
Grouping and Co-training [32.45488147013166]
Pseudo-labeling is a key component in semi-supervised learning (SSL)
We propose SemCo, a method which leverages label semantics and co-training to address this problem.
We show that our method achieves state-of-the-art performance across various SSL tasks including 5.6% accuracy improvement on Mini-ImageNet dataset with 1000 labeled examples.
arXiv Detail & Related papers (2021-04-12T07:33:16Z) - PCAMs: Weakly Supervised Semantic Segmentation Using Point Supervision [12.284208932393073]
This paper presents a novel procedure for producing semantic segmentation from images given some point level annotations.
We propose training a CNN that is normally fully supervised using our pseudo labels in place of ground truth labels.
Our method achieves state of the art results for point supervised semantic segmentation on the PASCAL VOC 2012 dataset citeeveringham2010pascal, even outperforming state of the art methods for stronger bounding box and squiggle supervision.
arXiv Detail & Related papers (2020-07-10T21:25:27Z) - Few-shot 3D Point Cloud Semantic Segmentation [138.80825169240302]
We propose a novel attention-aware multi-prototype transductive few-shot point cloud semantic segmentation method.
Our proposed method shows significant and consistent improvements compared to baselines in different few-shot point cloud semantic segmentation settings.
arXiv Detail & Related papers (2020-06-22T08:05:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.