Speech Synthesis By Unrolling Diffusion Process using Neural Network Layers
- URL: http://arxiv.org/abs/2309.09652v5
- Date: Wed, 11 Jun 2025 05:56:08 GMT
- Title: Speech Synthesis By Unrolling Diffusion Process using Neural Network Layers
- Authors: Peter Ochieng,
- Abstract summary: UDPNet is a novel architecture designed to accelerate the reverse diffusion process in speech synthesis.<n>We show that UDPNet consistently outperforms state-of-the-art methods in both quality and efficiency.<n>These results position UDPNet as a robust solution for real-time speech synthesis applications.
- Score: 3.2634122554914002
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work introduces UDPNet, a novel architecture designed to accelerate the reverse diffusion process in speech synthesis. Unlike traditional diffusion models that rely on timestep embeddings and shared network parameters, UDPNet unrolls the reverse diffusion process directly into the network architecture, with successive layers corresponding to equally spaced steps in the diffusion schedule. Each layer progressively refines the noisy input, culminating in a high-fidelity estimation of the original data, \(x_0\). Additionally, we redefine the learning target by predicting latent variables instead of the conventional \(x_0\) or noise \(\epsilon_0\). This shift addresses the common issue of large prediction errors in early denoising stages, effectively reducing speech distortion. Extensive evaluations on single- and multi-speaker datasets demonstrate that UDPNet consistently outperforms state-of-the-art methods in both quality and efficiency, while generalizing effectively to unseen speech. These results position UDPNet as a robust solution for real-time speech synthesis applications. Sample audio is available at https://onexpeters.github.io/UDPNet.
Related papers
- Efficient Speech Language Modeling via Energy Distance in Continuous Latent Space [78.48611303387118]
We introduce SLED, an alternative approach to speech language modeling by encoding speech waveforms into sequences of continuous latent representations.<n>SLED avoids discretization errors and eliminates the need for the complicated hierarchical architectures common in existing speech language models.<n> Empirical results demonstrate that SLED achieves strong performance in both zero-shot and streaming speech synthesis.
arXiv Detail & Related papers (2025-05-19T14:38:59Z) - Distributional Diffusion Models with Scoring Rules [83.38210785728994]
Diffusion models generate high-quality synthetic data.
generating high-quality outputs requires many discretization steps.
We propose to accomplish sample generation by learning the posterior em distribution of clean data samples.
arXiv Detail & Related papers (2025-02-04T16:59:03Z) - Towards More Accurate Diffusion Model Acceleration with A Timestep
Aligner [84.97253871387028]
A diffusion model, which is formulated to produce an image using thousands of denoising steps, usually suffers from a slow inference speed.
We propose a timestep aligner that helps find a more accurate integral direction for a particular interval at the minimum cost.
Experiments show that our plug-in design can be trained efficiently and boost the inference performance of various state-of-the-art acceleration methods.
arXiv Detail & Related papers (2023-10-14T02:19:07Z) - High-Fidelity Speech Synthesis with Minimal Supervision: All Using
Diffusion Models [56.00939852727501]
Minimally-supervised speech synthesis decouples TTS by combining two types of discrete speech representations.
Non-autoregressive framework enhances controllability, and duration diffusion model enables diversified prosodic expression.
arXiv Detail & Related papers (2023-09-27T09:27:03Z) - Single and Few-step Diffusion for Generative Speech Enhancement [18.487296462927034]
Diffusion models have shown promising results in speech enhancement.
In this paper, we address these limitations through a two-stage training approach.
We show that our proposed method keeps a steady performance and therefore largely outperforms the diffusion baseline in this setting.
arXiv Detail & Related papers (2023-09-18T11:30:58Z) - Boosting Fast and High-Quality Speech Synthesis with Linear Diffusion [85.54515118077825]
This paper proposes a linear diffusion model (LinDiff) based on an ordinary differential equation to simultaneously reach fast inference and high sample quality.
To reduce computational complexity, LinDiff employs a patch-based processing approach that partitions the input signal into small patches.
Our model can synthesize speech of a quality comparable to that of autoregressive models with faster synthesis speed.
arXiv Detail & Related papers (2023-06-09T07:02:43Z) - UDPM: Upsampling Diffusion Probabilistic Models [33.51145642279836]
Denoising Diffusion Probabilistic Models (DDPM) have recently gained significant attention.
DDPMs generate high-quality samples from complex data distributions by defining an inverse process.
Unlike generative adversarial networks (GANs), the latent space of diffusion models is less interpretable.
In this work, we propose to generalize the denoising diffusion process into an Upsampling Diffusion Probabilistic Model (UDPM)
arXiv Detail & Related papers (2023-05-25T17:25:14Z) - DiffTAD: Temporal Action Detection with Proposal Denoising Diffusion [137.8749239614528]
We propose a new formulation of temporal action detection (TAD) with denoising diffusion, DiffTAD.
Taking as input random temporal proposals, it can yield action proposals accurately given an untrimmed long video.
arXiv Detail & Related papers (2023-03-27T00:40:52Z) - VideoFusion: Decomposed Diffusion Models for High-Quality Video
Generation [88.49030739715701]
This work presents a decomposed diffusion process via resolving the per-frame noise into a base noise that is shared among all frames and a residual noise that varies along the time axis.
Experiments on various datasets confirm that our approach, termed as VideoFusion, surpasses both GAN-based and diffusion-based alternatives in high-quality video generation.
arXiv Detail & Related papers (2023-03-15T02:16:39Z) - Decoder Tuning: Efficient Language Understanding as Decoding [84.68266271483022]
We present Decoder Tuning (DecT), which in contrast optimize task-specific decoder networks on the output side.
By gradient-based optimization, DecT can be trained within several seconds and requires only one P query per sample.
We conduct extensive natural language understanding experiments and show that DecT significantly outperforms state-of-the-art algorithms with a $200times$ speed-up.
arXiv Detail & Related papers (2022-12-16T11:15:39Z) - Post-training Quantization on Diffusion Models [14.167428759401703]
Denoising diffusion (score-based) generative models have recently achieved significant accomplishments in generating realistic and diverse data.
These approaches define a forward diffusion process for transforming data into noise and a backward denoising process for sampling data from noise.
Unfortunately, the generation process of current denoising diffusion models is notoriously slow due to the lengthy iterative noise estimations.
arXiv Detail & Related papers (2022-11-28T19:33:39Z) - Speech Enhancement and Dereverberation with Diffusion-based Generative
Models [14.734454356396157]
We present a detailed overview of the diffusion process that is based on a differential equation.
We show that this procedure enables using only 30 diffusion steps to generate high-quality clean speech estimates.
In an extensive cross-dataset evaluation, we show that the improved method can compete with recent discriminative models.
arXiv Detail & Related papers (2022-08-11T13:55:12Z) - Direction-Aware Adaptive Online Neural Speech Enhancement with an
Augmented Reality Headset in Real Noisy Conversational Environments [21.493664174262737]
This paper describes the practical response- and performance-aware development of online speech enhancement for an augmented reality (AR) headset.
It helps a user understand conversations made in real noisy echoic environments (e.g., cocktail party)
The method is used with a blind dereverberation method called weighted prediction error (WPE) for transcribing the noisy reverberant speech of a speaker.
arXiv Detail & Related papers (2022-07-15T05:14:27Z) - ProDiff: Progressive Fast Diffusion Model For High-Quality
Text-to-Speech [63.780196620966905]
We propose ProDiff, on progressive fast diffusion model for high-quality text-to-speech.
ProDiff parameterizes the denoising model by directly predicting clean data to avoid distinct quality degradation in accelerating sampling.
Our evaluation demonstrates that ProDiff needs only 2 iterations to synthesize high-fidelity mel-spectrograms.
ProDiff enables a sampling speed of 24x faster than real-time on a single NVIDIA 2080Ti GPU.
arXiv Detail & Related papers (2022-07-13T17:45:43Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - Streaming End-to-End ASR based on Blockwise Non-Autoregressive Models [57.20432226304683]
Non-autoregressive (NAR) modeling has gained more and more attention in speech processing.
We propose a novel end-to-end streaming NAR speech recognition system.
We show that the proposed method improves online ASR recognition in low latency conditions.
arXiv Detail & Related papers (2021-07-20T11:42:26Z) - Diffusion-Based Representation Learning [65.55681678004038]
We augment the denoising score matching framework to enable representation learning without any supervised signal.
In contrast, the introduced diffusion-based representation learning relies on a new formulation of the denoising score matching objective.
Using the same approach, we propose to learn an infinite-dimensional latent code that achieves improvements of state-of-the-art models on semi-supervised image classification.
arXiv Detail & Related papers (2021-05-29T09:26:02Z) - Single Channel Speech Enhancement Using Temporal Convolutional Recurrent
Neural Networks [23.88788382262305]
temporal convolutional recurrent network (TCRN) is an end-to-end model that directly map noisy waveform to clean waveform.
We show that our model is able to improve the performance of model, compared with existing convolutional recurrent networks.
arXiv Detail & Related papers (2020-02-02T04:26:50Z) - Temporal-Spatial Neural Filter: Direction Informed End-to-End
Multi-channel Target Speech Separation [66.46123655365113]
Target speech separation refers to extracting the target speaker's speech from mixed signals.
Two main challenges are the complex acoustic environment and the real-time processing requirement.
We propose a temporal-spatial neural filter, which directly estimates the target speech waveform from multi-speaker mixture.
arXiv Detail & Related papers (2020-01-02T11:12:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.