RaTrack: Moving Object Detection and Tracking with 4D Radar Point Cloud
- URL: http://arxiv.org/abs/2309.09737v7
- Date: Mon, 11 Mar 2024 16:59:25 GMT
- Title: RaTrack: Moving Object Detection and Tracking with 4D Radar Point Cloud
- Authors: Zhijun Pan, Fangqiang Ding, Hantao Zhong, Chris Xiaoxuan Lu
- Abstract summary: We introduce RaTrack, an innovative solution tailored for radar-based tracking.
Our method focuses on motion segmentation and clustering, enriched by a motion estimation module.
RaTrack showcases superior tracking precision of moving objects, largely surpassing the performance of the state of the art.
- Score: 10.593320435411714
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mobile autonomy relies on the precise perception of dynamic environments.
Robustly tracking moving objects in 3D world thus plays a pivotal role for
applications like trajectory prediction, obstacle avoidance, and path planning.
While most current methods utilize LiDARs or cameras for Multiple Object
Tracking (MOT), the capabilities of 4D imaging radars remain largely
unexplored. Recognizing the challenges posed by radar noise and point sparsity
in 4D radar data, we introduce RaTrack, an innovative solution tailored for
radar-based tracking. Bypassing the typical reliance on specific object types
and 3D bounding boxes, our method focuses on motion segmentation and
clustering, enriched by a motion estimation module. Evaluated on the
View-of-Delft dataset, RaTrack showcases superior tracking precision of moving
objects, largely surpassing the performance of the state of the art. We release
our code and model at https://github.com/LJacksonPan/RaTrack.
Related papers
- RadarOcc: Robust 3D Occupancy Prediction with 4D Imaging Radar [15.776076554141687]
3D occupancy-based perception pipeline has significantly advanced autonomous driving.
Current methods rely on LiDAR or camera inputs for 3D occupancy prediction.
We introduce a novel approach that utilizes 4D imaging radar sensors for 3D occupancy prediction.
arXiv Detail & Related papers (2024-05-22T21:48:17Z) - Once Detected, Never Lost: Surpassing Human Performance in Offline LiDAR
based 3D Object Detection [50.959453059206446]
This paper aims for high-performance offline LiDAR-based 3D object detection.
We first observe that experienced human annotators annotate objects from a track-centric perspective.
We propose a high-performance offline detector in a track-centric perspective instead of the conventional object-centric perspective.
arXiv Detail & Related papers (2023-04-24T17:59:05Z) - ByteTrackV2: 2D and 3D Multi-Object Tracking by Associating Every
Detection Box [81.45219802386444]
Multi-object tracking (MOT) aims at estimating bounding boxes and identities of objects across video frames.
We propose a hierarchical data association strategy to mine the true objects in low-score detection boxes.
In 3D scenarios, it is much easier for the tracker to predict object velocities in the world coordinate.
arXiv Detail & Related papers (2023-03-27T15:35:21Z) - A Lightweight and Detector-free 3D Single Object Tracker on Point Clouds [50.54083964183614]
It is non-trivial to perform accurate target-specific detection since the point cloud of objects in raw LiDAR scans is usually sparse and incomplete.
We propose DMT, a Detector-free Motion prediction based 3D Tracking network that totally removes the usage of complicated 3D detectors.
arXiv Detail & Related papers (2022-03-08T17:49:07Z) - PC-DAN: Point Cloud based Deep Affinity Network for 3D Multi-Object
Tracking (Accepted as an extended abstract in JRDB-ACT Workshop at CVPR21) [68.12101204123422]
A point cloud is a dense compilation of spatial data in 3D coordinates.
We propose a PointNet-based approach for 3D Multi-Object Tracking (MOT)
arXiv Detail & Related papers (2021-06-03T05:36:39Z) - EagerMOT: 3D Multi-Object Tracking via Sensor Fusion [68.8204255655161]
Multi-object tracking (MOT) enables mobile robots to perform well-informed motion planning and navigation by localizing surrounding objects in 3D space and time.
Existing methods rely on depth sensors (e.g., LiDAR) to detect and track targets in 3D space, but only up to a limited sensing range due to the sparsity of the signal.
We propose EagerMOT, a simple tracking formulation that integrates all available object observations from both sensor modalities to obtain a well-informed interpretation of the scene dynamics.
arXiv Detail & Related papers (2021-04-29T22:30:29Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z) - JRMOT: A Real-Time 3D Multi-Object Tracker and a New Large-Scale Dataset [34.609125601292]
We present JRMOT, a novel 3D MOT system that integrates information from RGB images and 3D point clouds to achieve real-time tracking performance.
As part of our work, we release the JRDB dataset, a novel large scale 2D+3D dataset and benchmark.
The presented 3D MOT system demonstrates state-of-the-art performance against competing methods on the popular 2D tracking KITTI benchmark.
arXiv Detail & Related papers (2020-02-19T19:21:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.