DriveDreamer: Towards Real-world-driven World Models for Autonomous
Driving
- URL: http://arxiv.org/abs/2309.09777v2
- Date: Mon, 27 Nov 2023 05:09:29 GMT
- Title: DriveDreamer: Towards Real-world-driven World Models for Autonomous
Driving
- Authors: Xiaofeng Wang, Zheng Zhu, Guan Huang, Xinze Chen, Jiagang Zhu, Jiwen
Lu
- Abstract summary: We introduce DriveDreamer, a world model entirely derived from real-world driving scenarios.
In the initial phase, DriveDreamer acquires a deep understanding of structured traffic constraints, while the subsequent stage equips it with the ability to anticipate future states.
DriveDreamer enables the generation of realistic and reasonable driving policies, opening avenues for interaction and practical applications.
- Score: 76.24483706445298
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: World models, especially in autonomous driving, are trending and drawing
extensive attention due to their capacity for comprehending driving
environments. The established world model holds immense potential for the
generation of high-quality driving videos, and driving policies for safe
maneuvering. However, a critical limitation in relevant research lies in its
predominant focus on gaming environments or simulated settings, thereby lacking
the representation of real-world driving scenarios. Therefore, we introduce
DriveDreamer, a pioneering world model entirely derived from real-world driving
scenarios. Regarding that modeling the world in intricate driving scenes
entails an overwhelming search space, we propose harnessing the powerful
diffusion model to construct a comprehensive representation of the complex
environment. Furthermore, we introduce a two-stage training pipeline. In the
initial phase, DriveDreamer acquires a deep understanding of structured traffic
constraints, while the subsequent stage equips it with the ability to
anticipate future states. The proposed DriveDreamer is the first world model
established from real-world driving scenarios. We instantiate DriveDreamer on
the challenging nuScenes benchmark, and extensive experiments verify that
DriveDreamer empowers precise, controllable video generation that faithfully
captures the structural constraints of real-world traffic scenarios.
Additionally, DriveDreamer enables the generation of realistic and reasonable
driving policies, opening avenues for interaction and practical applications.
Related papers
- Exploring the Interplay Between Video Generation and World Models in Autonomous Driving: A Survey [61.39993881402787]
World models and video generation are pivotal technologies in the domain of autonomous driving.
This paper investigates the relationship between these two technologies.
By analyzing the interplay between video generation and world models, this survey identifies critical challenges and future research directions.
arXiv Detail & Related papers (2024-11-05T08:58:35Z) - DrivingDojo Dataset: Advancing Interactive and Knowledge-Enriched Driving World Model [65.43473733967038]
We introduce DrivingDojo, the first dataset tailor-made for training interactive world models with complex driving dynamics.
Our dataset features video clips with a complete set of driving maneuvers, diverse multi-agent interplay, and rich open-world driving knowledge.
arXiv Detail & Related papers (2024-10-14T17:19:23Z) - DriveArena: A Closed-loop Generative Simulation Platform for Autonomous Driving [30.024309081789053]
DriveArena is a high-fidelity closed-loop simulation system designed for driving agents navigating in real scenarios.
It features Traffic Manager, a traffic simulator capable of generating realistic traffic flow on any worldwide street map, and World Dreamer, a high-fidelity conditional generative model with infinite autoregression.
arXiv Detail & Related papers (2024-08-01T09:32:01Z) - WorldDreamer: Towards General World Models for Video Generation via
Predicting Masked Tokens [75.02160668328425]
We introduce WorldDreamer, a pioneering world model to foster a comprehensive comprehension of general world physics and motions.
WorldDreamer frames world modeling as an unsupervised visual sequence modeling challenge.
Our experiments show that WorldDreamer excels in generating videos across different scenarios, including natural scenes and driving environments.
arXiv Detail & Related papers (2024-01-18T14:01:20Z) - Driving into the Future: Multiview Visual Forecasting and Planning with
World Model for Autonomous Driving [56.381918362410175]
Drive-WM is the first driving world model compatible with existing end-to-end planning models.
Our model generates high-fidelity multiview videos in driving scenes.
arXiv Detail & Related papers (2023-11-29T18:59:47Z) - SceneGen: Learning to Generate Realistic Traffic Scenes [92.98412203941912]
We present SceneGen, a neural autoregressive model of traffic scenes that eschews the need for rules and distributions.
We demonstrate SceneGen's ability to faithfully model distributions of real traffic scenes.
arXiv Detail & Related papers (2021-01-16T22:51:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.