General In-Hand Object Rotation with Vision and Touch
- URL: http://arxiv.org/abs/2309.09979v2
- Date: Thu, 28 Sep 2023 08:22:15 GMT
- Title: General In-Hand Object Rotation with Vision and Touch
- Authors: Haozhi Qi, Brent Yi, Sudharshan Suresh, Mike Lambeta, Yi Ma, Roberto
Calandra, Jitendra Malik
- Abstract summary: We introduce RotateIt, a system that enables fingertip-based object rotation along multiple axes.
We distill it to operate on realistic yet noisy simulated visuotactile and proprioceptive sensory inputs.
- Score: 46.871539289388615
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce RotateIt, a system that enables fingertip-based object rotation
along multiple axes by leveraging multimodal sensory inputs. Our system is
trained in simulation, where it has access to ground-truth object shapes and
physical properties. Then we distill it to operate on realistic yet noisy
simulated visuotactile and proprioceptive sensory inputs. These multimodal
inputs are fused via a visuotactile transformer, enabling online inference of
object shapes and physical properties during deployment. We show significant
performance improvements over prior methods and the importance of visual and
tactile sensing.
Related papers
- AnyRotate: Gravity-Invariant In-Hand Object Rotation with Sim-to-Real Touch [9.606323817785114]
We present AnyRotate, a system for gravity-invariant multi-axis in-hand object rotation using dense featured sim-to-real touch.
Our formulation allows the training of a unified policy to rotate unseen objects about arbitrary rotation axes in any hand direction.
Rich multi-fingered tactile sensing can detect unstable grasps and provide a reactive behavior that improves the robustness of the policy.
arXiv Detail & Related papers (2024-05-12T22:51:35Z) - Controllable Visual-Tactile Synthesis [28.03469909285511]
We develop a conditional generative model that synthesizes both visual and tactile outputs from a single sketch.
We then introduce a pipeline to render high-quality visual and tactile outputs on an electroadhesion-based haptic device.
arXiv Detail & Related papers (2023-05-04T17:59:51Z) - Tactile-Filter: Interactive Tactile Perception for Part Mating [54.46221808805662]
Humans rely on touch and tactile sensing for a lot of dexterous manipulation tasks.
vision-based tactile sensors are being widely used for various robotic perception and control tasks.
We present a method for interactive perception using vision-based tactile sensors for a part mating task.
arXiv Detail & Related papers (2023-03-10T16:27:37Z) - Reconfigurable Data Glove for Reconstructing Physical and Virtual Grasps [100.72245315180433]
We present a reconfigurable data glove design to capture different modes of human hand-object interactions.
The glove operates in three modes for various downstream tasks with distinct features.
We evaluate the system's three modes by (i) recording hand gestures and associated forces, (ii) improving manipulation fluency in VR, and (iii) producing realistic simulation effects of various tool uses.
arXiv Detail & Related papers (2023-01-14T05:35:50Z) - Visual-Tactile Multimodality for Following Deformable Linear Objects
Using Reinforcement Learning [15.758583731036007]
We study the problem of using vision and tactile inputs together to complete the task of following deformable linear objects.
We create a Reinforcement Learning agent using different sensing modalities and investigate how its behaviour can be boosted.
Our experiments show that the use of both vision and tactile inputs, together with proprioception, allows the agent to complete the task in up to 92% of cases.
arXiv Detail & Related papers (2022-03-31T21:59:08Z) - Dynamic Modeling of Hand-Object Interactions via Tactile Sensing [133.52375730875696]
In this work, we employ a high-resolution tactile glove to perform four different interactive activities on a diversified set of objects.
We build our model on a cross-modal learning framework and generate the labels using a visual processing pipeline to supervise the tactile model.
This work takes a step on dynamics modeling in hand-object interactions from dense tactile sensing.
arXiv Detail & Related papers (2021-09-09T16:04:14Z) - Elastic Tactile Simulation Towards Tactile-Visual Perception [58.44106915440858]
We propose Elastic Interaction of Particles (EIP) for tactile simulation.
EIP models the tactile sensor as a group of coordinated particles, and the elastic property is applied to regulate the deformation of particles during contact.
We further propose a tactile-visual perception network that enables information fusion between tactile data and visual images.
arXiv Detail & Related papers (2021-08-11T03:49:59Z) - Learning Intuitive Physics with Multimodal Generative Models [24.342994226226786]
This paper presents a perception framework that fuses visual and tactile feedback to make predictions about the expected motion of objects in dynamic scenes.
We use a novel See-Through-your-Skin (STS) sensor that provides high resolution multimodal sensing of contact surfaces.
We validate through simulated and real-world experiments in which the resting state of an object is predicted from given initial conditions.
arXiv Detail & Related papers (2021-01-12T12:55:53Z) - ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation [75.0278287071591]
ThreeDWorld (TDW) is a platform for interactive multi-modal physical simulation.
TDW enables simulation of high-fidelity sensory data and physical interactions between mobile agents and objects in rich 3D environments.
We present initial experiments enabled by TDW in emerging research directions in computer vision, machine learning, and cognitive science.
arXiv Detail & Related papers (2020-07-09T17:33:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.