Who to Trust, How and Why: Untangling AI Ethics Principles,
Trustworthiness and Trust
- URL: http://arxiv.org/abs/2309.10318v1
- Date: Tue, 19 Sep 2023 05:00:34 GMT
- Title: Who to Trust, How and Why: Untangling AI Ethics Principles,
Trustworthiness and Trust
- Authors: Andreas Duenser and David M. Douglas
- Abstract summary: We argue for the need to distinguish these concepts more clearly.
We discuss that trust in AI involves not only reliance on the system itself, but also trust in the developers of the AI system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an overview of the literature on trust in AI and AI
trustworthiness and argue for the need to distinguish these concepts more
clearly and to gather more empirically evidence on what contributes to people s
trusting behaviours. We discuss that trust in AI involves not only reliance on
the system itself, but also trust in the developers of the AI system. AI ethics
principles such as explainability and transparency are often assumed to promote
user trust, but empirical evidence of how such features actually affect how
users perceive the system s trustworthiness is not as abundance or not that
clear. AI systems should be recognised as socio-technical systems, where the
people involved in designing, developing, deploying, and using the system are
as important as the system for determining whether it is trustworthy. Without
recognising these nuances, trust in AI and trustworthy AI risk becoming
nebulous terms for any desirable feature for AI systems.
Related papers
- Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
Key requirements for trustworthy AI can be translated into design choices for the components of empirical risk minimization.
We hope to provide actionable guidance for building AI systems that meet emerging standards for trustworthiness of AI.
arXiv Detail & Related papers (2024-10-25T07:53:32Z) - A Diachronic Perspective on User Trust in AI under Uncertainty [52.44939679369428]
Modern NLP systems are often uncalibrated, resulting in confidently incorrect predictions that undermine user trust.
We study the evolution of user trust in response to trust-eroding events using a betting game.
arXiv Detail & Related papers (2023-10-20T14:41:46Z) - Never trust, always verify : a roadmap for Trustworthy AI? [12.031113181911627]
We examine trust in the context of AI-based systems to understand what it means for an AI system to be trustworthy.
We suggest a trust (resp. zero-trust) model for AI and suggest a set of properties that should be satisfied to ensure the trustworthiness of AI systems.
arXiv Detail & Related papers (2022-06-23T21:13:10Z) - Designing for Responsible Trust in AI Systems: A Communication
Perspective [56.80107647520364]
We draw from communication theories and literature on trust in technologies to develop a conceptual model called MATCH.
We highlight transparency and interaction as AI systems' affordances that present a wide range of trustworthiness cues to users.
We propose a checklist of requirements to help technology creators identify appropriate cues to use.
arXiv Detail & Related papers (2022-04-29T00:14:33Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Trustworthy AI: From Principles to Practices [44.67324097900778]
Many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc.
In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems.
To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems.
arXiv Detail & Related papers (2021-10-04T03:20:39Z) - Know Your Model (KYM): Increasing Trust in AI and Machine Learning [4.93786553432578]
We analyze each element of trustworthiness and provide a set of 20 guidelines that can be leveraged to ensure optimal AI functionality.
The guidelines help ensure that trustworthiness is provable and can be demonstrated, they are implementation agnostic, and they can be applied to any AI system in any sector.
arXiv Detail & Related papers (2021-05-31T14:08:22Z) - Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and
Goals of Human Trust in AI [55.4046755826066]
We discuss a model of trust inspired by, but not identical to, sociology's interpersonal trust (i.e., trust between people)
We incorporate a formalization of 'contractual trust', such that trust between a user and an AI is trust that some implicit or explicit contract will hold.
We discuss how to design trustworthy AI, how to evaluate whether trust has manifested, and whether it is warranted.
arXiv Detail & Related papers (2020-10-15T03:07:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.