Locate and Verify: A Two-Stream Network for Improved Deepfake Detection
- URL: http://arxiv.org/abs/2309.11131v1
- Date: Wed, 20 Sep 2023 08:25:19 GMT
- Title: Locate and Verify: A Two-Stream Network for Improved Deepfake Detection
- Authors: Chao Shuai, Jieming Zhong, Shuang Wu, Feng Lin, Zhibo Wang, Zhongjie
Ba, Zhenguang Liu, Lorenzo Cavallaro, Kui Ren
- Abstract summary: Current deepfake detection methods are typically inadequate in generalizability.
We propose an innovative two-stream network that effectively enlarges the potential regions from which the model extracts evidence.
We also propose a Semi-supervised Patch Similarity Learning strategy to estimate patch-level forged location annotations.
- Score: 33.50963446256726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deepfake has taken the world by storm, triggering a trust crisis. Current
deepfake detection methods are typically inadequate in generalizability, with a
tendency to overfit to image contents such as the background, which are
frequently occurring but relatively unimportant in the training dataset.
Furthermore, current methods heavily rely on a few dominant forgery regions and
may ignore other equally important regions, leading to inadequate uncovering of
forgery cues. In this paper, we strive to address these shortcomings from three
aspects: (1) We propose an innovative two-stream network that effectively
enlarges the potential regions from which the model extracts forgery evidence.
(2) We devise three functional modules to handle the multi-stream and
multi-scale features in a collaborative learning scheme. (3) Confronted with
the challenge of obtaining forgery annotations, we propose a Semi-supervised
Patch Similarity Learning strategy to estimate patch-level forged location
annotations. Empirically, our method demonstrates significantly improved
robustness and generalizability, outperforming previous methods on six
benchmarks, and improving the frame-level AUC on Deepfake Detection Challenge
preview dataset from 0.797 to 0.835 and video-level AUC on CelebDF$\_$v1
dataset from 0.811 to 0.847. Our implementation is available at
https://github.com/sccsok/Locate-and-Verify.
Related papers
- Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - DFIL: Deepfake Incremental Learning by Exploiting Domain-invariant
Forgery Clues [32.045504965382015]
Current deepfake detection models can generally recognize forgery images by training on a large dataset.
The accuracy of detection models degrades significantly on images generated by new deepfake methods due to the difference in data distribution.
We present a novel incremental learning framework that improves the generalization of deepfake detection models.
arXiv Detail & Related papers (2023-09-18T07:02:26Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Towards Generalizable Deepfake Detection by Primary Region
Regularization [52.41801719896089]
This paper enhances the generalization capability from a novel regularization perspective.
Our method consists of two stages, namely the static localization for primary region maps, and the dynamic exploitation of primary region masks.
We conduct extensive experiments over three widely used deepfake datasets - DFDC, DF-1.0, and Celeb-DF with five backbones.
arXiv Detail & Related papers (2023-07-24T05:43:34Z) - DeepfakeBench: A Comprehensive Benchmark of Deepfake Detection [55.70982767084996]
A critical yet frequently overlooked challenge in the field of deepfake detection is the lack of a standardized, unified, comprehensive benchmark.
We present the first comprehensive benchmark for deepfake detection, called DeepfakeBench, which offers three key contributions.
DeepfakeBench contains 15 state-of-the-art detection methods, 9CL datasets, a series of deepfake detection evaluation protocols and analysis tools, as well as comprehensive evaluations.
arXiv Detail & Related papers (2023-07-04T01:34:41Z) - Exploring the Relationship between Samples and Masks for Robust Defect
Localization [1.90365714903665]
This paper proposes a one-stage framework that detects defective patterns directly without the modeling process.
Explicit information that could indicate the position of defects is intentionally excluded to avoid learning any direct mapping.
Results show that the proposed method is 2.9% higher than the SOTA methods in F1-Score, while substantially outperforming SOTA methods in generalizability.
arXiv Detail & Related papers (2023-06-19T06:41:19Z) - Deepfake Detection via Joint Unsupervised Reconstruction and Supervised
Classification [25.84902508816679]
We introduce a novel approach for deepfake detection, which considers the reconstruction and classification tasks simultaneously.
This method shares the information learned by one task with the other, which focuses on a different aspect other existing works rarely consider.
Our method achieves state-of-the-art performance on three commonly-used datasets.
arXiv Detail & Related papers (2022-11-24T05:44:26Z) - A Unified Model for Multi-class Anomaly Detection [33.534990722449066]
UniAD accomplishes anomaly detection for multiple classes with a unified framework.
We evaluate our algorithm on MVTec-AD and CIFAR-10 datasets.
arXiv Detail & Related papers (2022-06-08T06:05:09Z) - Multi-attentional Deepfake Detection [79.80308897734491]
Face forgery by deepfake is widely spread over the internet and has raised severe societal concerns.
We propose a new multi-attentional deepfake detection network. Specifically, it consists of three key components: 1) multiple spatial attention heads to make the network attend to different local parts; 2) textural feature enhancement block to zoom in the subtle artifacts in shallow features; 3) aggregate the low-level textural feature and high-level semantic features guided by the attention maps.
arXiv Detail & Related papers (2021-03-03T13:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.