Generalized Few-Shot Point Cloud Segmentation Via Geometric Words
- URL: http://arxiv.org/abs/2309.11222v1
- Date: Wed, 20 Sep 2023 11:24:33 GMT
- Title: Generalized Few-Shot Point Cloud Segmentation Via Geometric Words
- Authors: Yating Xu, Conghui Hu, Na Zhao, Gim Hee Lee
- Abstract summary: Few-shot point cloud segmentation algorithms learn to adapt to new classes at the sacrifice of segmentation accuracy for the base classes.
We present the first attempt at a more practical paradigm of generalized few-shot point cloud segmentation.
We propose the geometric words to represent geometric components shared between the base and novel classes, and incorporate them into a novel geometric-aware semantic representation.
- Score: 54.32239996417363
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing fully-supervised point cloud segmentation methods suffer in the
dynamic testing environment with emerging new classes. Few-shot point cloud
segmentation algorithms address this problem by learning to adapt to new
classes at the sacrifice of segmentation accuracy for the base classes, which
severely impedes its practicality. This largely motivates us to present the
first attempt at a more practical paradigm of generalized few-shot point cloud
segmentation, which requires the model to generalize to new categories with
only a few support point clouds and simultaneously retain the capability to
segment base classes. We propose the geometric words to represent geometric
components shared between the base and novel classes, and incorporate them into
a novel geometric-aware semantic representation to facilitate better
generalization to the new classes without forgetting the old ones. Moreover, we
introduce geometric prototypes to guide the segmentation with geometric prior
knowledge. Extensive experiments on S3DIS and ScanNet consistently illustrate
the superior performance of our method over baseline methods. Our code is
available at: https://github.com/Pixie8888/GFS-3DSeg_GWs.
Related papers
- Rethinking Few-shot 3D Point Cloud Semantic Segmentation [62.80639841429669]
This paper revisits few-shot 3D point cloud semantic segmentation (FS-PCS)
We focus on two significant issues in the state-of-the-art: foreground leakage and sparse point distribution.
To address these issues, we introduce a standardized FS-PCS setting, upon which a new benchmark is built.
arXiv Detail & Related papers (2024-03-01T15:14:47Z) - BPNet: B\'ezier Primitive Segmentation on 3D Point Clouds [17.133617027574353]
BPNet is a novel end-to-end deep learning framework to learn B'ezier primitive segmentation on 3D point clouds.
A joint optimization framework is proposed to learn B'ezier primitive segmentation and geometric fitting simultaneously.
Experiments show superior performance over previous work in terms of segmentation, with a substantially faster inference speed.
arXiv Detail & Related papers (2023-07-08T16:46:01Z) - Few-Shot 3D Point Cloud Semantic Segmentation via Stratified
Class-Specific Attention Based Transformer Network [22.9434434107516]
We develop a new multi-layer transformer network for few-shot point cloud semantic segmentation.
Our method achieves the new state-of-the-art performance, with 15% less inference time, over existing few-shot 3D point cloud segmentation models.
arXiv Detail & Related papers (2023-03-28T00:27:54Z) - Zero-shot point cloud segmentation by transferring geometric primitives [68.18710039217336]
We investigate zero-shot point cloud semantic segmentation, where the network is trained on seen objects and able to segment unseen objects.
We propose a novel framework to learn the geometric primitives shared in seen and unseen categories' objects and employ a fine-grained alignment between language and the learned geometric primitives.
arXiv Detail & Related papers (2022-10-18T15:06:54Z) - GeoSegNet: Point Cloud Semantic Segmentation via Geometric
Encoder-Decoder Modeling [39.35429984469557]
We present a robust semantic segmentation network dubbed GeoSegNet.
Our GeoSegNet consists of a multi-geometry based encoder and a boundary-guided decoder.
Experiments show obvious improvements of our method over its competitors in terms of the overall segmentation accuracy and object boundary clearness.
arXiv Detail & Related papers (2022-07-14T09:24:05Z) - GFNet: Geometric Flow Network for 3D Point Cloud Semantic Segmentation [91.15865862160088]
We introduce a geometric flow network (GFNet) to explore the geometric correspondence between different views in an align-before-fuse manner.
Specifically, we devise a novel geometric flow module (GFM) to bidirectionally align and propagate the complementary information across different views.
arXiv Detail & Related papers (2022-07-06T11:48:08Z) - SemAffiNet: Semantic-Affine Transformation for Point Cloud Segmentation [94.11915008006483]
We propose SemAffiNet for point cloud semantic segmentation.
We conduct extensive experiments on the ScanNetV2 and NYUv2 datasets.
arXiv Detail & Related papers (2022-05-26T17:00:23Z) - Learn to Learn Metric Space for Few-Shot Segmentation of 3D Shapes [17.217954254022573]
We introduce a meta-learning-based method for few-shot 3D shape segmentation where only a few labeled samples are provided for the unseen classes.
We demonstrate the superior performance of our proposed on the ShapeNet part dataset under the few-shot scenario, compared with well-established baseline and state-of-the-art semi-supervised methods.
arXiv Detail & Related papers (2021-07-07T01:47:00Z) - LRGNet: Learnable Region Growing for Class-Agnostic Point Cloud
Segmentation [19.915593390338337]
This research proposes a learnable region growing method for class-agnostic point cloud segmentation.
The proposed method is able to segment any class of objects using a single deep neural network without any assumptions about their shapes and sizes.
arXiv Detail & Related papers (2021-03-16T15:58:01Z) - Few-shot 3D Point Cloud Semantic Segmentation [138.80825169240302]
We propose a novel attention-aware multi-prototype transductive few-shot point cloud semantic segmentation method.
Our proposed method shows significant and consistent improvements compared to baselines in different few-shot point cloud semantic segmentation settings.
arXiv Detail & Related papers (2020-06-22T08:05:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.