On the Fine-Grained Query Complexity of Symmetric Functions
- URL: http://arxiv.org/abs/2309.11279v2
- Date: Sun, 22 Oct 2023 02:38:07 GMT
- Title: On the Fine-Grained Query Complexity of Symmetric Functions
- Authors: Supartha Podder, Penghui Yao and Zekun Ye
- Abstract summary: This paper explores a fine-grained version of the Watrous conjecture.
It includes the randomized and quantum algorithms with success probabilities arbitrarily close to $1/2$.
- Score: 4.956977275061968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores a fine-grained version of the Watrous conjecture,
including the randomized and quantum algorithms with success probabilities
arbitrarily close to $1/2$. Our contributions include the following:
i) An analysis of the optimal success probability of quantum and randomized
query algorithms of two fundamental partial symmetric Boolean functions given a
fixed number of queries. We prove that for any quantum algorithm computing
these two functions using $T$ queries, there exist randomized algorithms using
$\mathsf{poly}(T)$ queries that achieve the same success probability as the
quantum algorithm, even if the success probability is arbitrarily close to 1/2.
ii) We establish that for any total symmetric Boolean function $f$, if a
quantum algorithm uses $T$ queries to compute $f$ with success probability
$1/2+\beta$, then there exists a randomized algorithm using $O(T^2)$ queries to
compute $f$ with success probability $1/2+\Omega(\delta\beta^2)$ on a
$1-\delta$ fraction of inputs, where $\beta,\delta$ can be arbitrarily small
positive values. As a corollary, we prove a randomized version of
Aaronson-Ambainis Conjecture for total symmetric Boolean functions in the
regime where the success probability of algorithms can be arbitrarily close to
1/2.
iii) We present polynomial equivalences for several fundamental complexity
measures of partial symmetric Boolean functions. Specifically, we first prove
that for certain partial symmetric Boolean functions, quantum query complexity
is at most quadratic in approximate degree for any error arbitrarily close to
1/2. Next, we show exact quantum query complexity is at most quadratic in
degree. Additionally, we give the tight bounds of several complexity measures,
indicating their polynomial equivalence.
Related papers
- Generalized Hybrid Search and Applications to Blockchain and Hash
Function Security [50.16790546184646]
We first examine the hardness of solving various search problems by hybrid quantum-classical strategies.
We then construct a hybrid quantum-classical search algorithm and analyze its success probability.
arXiv Detail & Related papers (2023-11-07T04:59:02Z) - On the average-case complexity of learning output distributions of
quantum circuits [55.37943886895049]
We show that learning the output distributions of brickwork random quantum circuits is average-case hard in the statistical query model.
This learning model is widely used as an abstract computational model for most generic learning algorithms.
arXiv Detail & Related papers (2023-05-09T20:53:27Z) - On the exact quantum query complexity of $\text{MOD}_m^n$ and $\text{EXACT}_{k,l}^n$ [4.956977275061968]
We present an exact quantum algorithm for computing $textMOD_mn$.
We show exact quantum query complexity of a broad class of symmetric functions that map $0,1n$ to a finite set $X$ is less than $n$.
arXiv Detail & Related papers (2023-03-20T08:17:32Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
General tools for designing efficient private estimation algorithms.
First efficient $(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery.
arXiv Detail & Related papers (2023-01-11T09:12:28Z) - Mind the gap: Achieving a super-Grover quantum speedup by jumping to the
end [114.3957763744719]
We present a quantum algorithm that has rigorous runtime guarantees for several families of binary optimization problems.
We show that the algorithm finds the optimal solution in time $O*(2(0.5-c)n)$ for an $n$-independent constant $c$.
We also show that for a large fraction of random instances from the $k$-spin model and for any fully satisfiable or slightly frustrated $k$-CSP formula, statement (a) is the case.
arXiv Detail & Related papers (2022-12-03T02:45:23Z) - Testing Boolean Functions Properties [1.5924410290166868]
The goal in the area of functions property testing is to determine whether a given black-box Boolean function has a particular given property or is $varepsilon$-far from having that property.
We investigate here several types of properties testing for Boolean functions (identity, correlations and balancedness) using the Deutsch-Jozsa algorithm.
arXiv Detail & Related papers (2021-09-14T15:27:38Z) - Random quantum circuits anti-concentrate in log depth [118.18170052022323]
We study the number of gates needed for the distribution over measurement outcomes for typical circuit instances to be anti-concentrated.
Our definition of anti-concentration is that the expected collision probability is only a constant factor larger than if the distribution were uniform.
In both the case where the gates are nearest-neighbor on a 1D ring and the case where gates are long-range, we show $O(n log(n)) gates are also sufficient.
arXiv Detail & Related papers (2020-11-24T18:44:57Z) - Characterization of exact one-query quantum algorithms (ii): for partial
functions [0.2741266294612775]
The query model (or black-box model) has attracted much attention from the communities of both classical and quantum computing.
Usually, quantum advantages are revealed by presenting a quantum algorithm that has a better query complexity than its classical counterpart.
For example, the well-known quantum algorithms including Deutsch-Jozsa algorithm, Simon algorithm and Grover algorithm all show a considerable advantage of quantum computing from the viewpoint of query complexity.
arXiv Detail & Related papers (2020-08-27T09:06:34Z) - An Optimal Separation of Randomized and Quantum Query Complexity [67.19751155411075]
We prove that for every decision tree, the absolute values of the Fourier coefficients of a given order $ellsqrtbinomdell (1+log n)ell-1,$ sum to at most $cellsqrtbinomdell (1+log n)ell-1,$ where $n$ is the number of variables, $d$ is the tree depth, and $c>0$ is an absolute constant.
arXiv Detail & Related papers (2020-08-24T06:50:57Z) - Exact Quantum Query Algorithms Outperforming Parity -- Beyond The
Symmetric functions [3.652509571098291]
We first obtain optimal exact quantum query algorithms ($Q_algo(f)$) for a direct sum based class of $Omega left( 2fracsqrtn2 right)$ non-symmetric functions.
We show that query complexity of $Q_algo$ is $lceil frac3n4 rceil$ whereas $D_oplus(f)$ varies between $n-1$ and $lceil frac3n4 rce
arXiv Detail & Related papers (2020-08-14T12:17:48Z) - Towards Optimal Separations between Quantum and Randomized Query
Complexities [0.30458514384586394]
We show that a quantum algorithm can be solved by making $2O(k)$ queries to the inputs.
For any constant $varepsilon>0$, this gives a $O(1)$ vs. $N2/3-varepsilon$ separation.
arXiv Detail & Related papers (2019-12-29T01:42:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.