SkeleTR: Towrads Skeleton-based Action Recognition in the Wild
- URL: http://arxiv.org/abs/2309.11445v1
- Date: Wed, 20 Sep 2023 16:22:33 GMT
- Title: SkeleTR: Towrads Skeleton-based Action Recognition in the Wild
- Authors: Haodong Duan, Mingze Xu, Bing Shuai, Davide Modolo, Zhuowen Tu, Joseph
Tighe, Alessandro Bergamo
- Abstract summary: SkeleTR is a new framework for skeleton-based action recognition.
It first models the intra-person skeleton dynamics for each skeleton sequence with graph convolutions.
It then uses stacked Transformer encoders to capture person interactions that are important for action recognition in general scenarios.
- Score: 86.03082891242698
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present SkeleTR, a new framework for skeleton-based action recognition. In
contrast to prior work, which focuses mainly on controlled environments, we
target more general scenarios that typically involve a variable number of
people and various forms of interaction between people. SkeleTR works with a
two-stage paradigm. It first models the intra-person skeleton dynamics for each
skeleton sequence with graph convolutions, and then uses stacked Transformer
encoders to capture person interactions that are important for action
recognition in general scenarios. To mitigate the negative impact of inaccurate
skeleton associations, SkeleTR takes relative short skeleton sequences as input
and increases the number of sequences. As a unified solution, SkeleTR can be
directly applied to multiple skeleton-based action tasks, including video-level
action classification, instance-level action detection, and group-level
activity recognition. It also enables transfer learning and joint training
across different action tasks and datasets, which result in performance
improvement. When evaluated on various skeleton-based action recognition
benchmarks, SkeleTR achieves the state-of-the-art performance.
Related papers
- Expressive Keypoints for Skeleton-based Action Recognition via Skeleton Transformation [14.033701085783177]
We propose Expressive Keypoints that incorporates hand and foot details to form a fine-grained skeletal representation, improving the discriminative ability for existing models in discerning intricate actions.
A plug-and-play Instance Pooling module is exploited to extend our approach to multi-person scenarios without surging computation costs.
arXiv Detail & Related papers (2024-06-26T01:48:56Z) - SkateFormer: Skeletal-Temporal Transformer for Human Action Recognition [25.341177384559174]
We propose a novel approach called Skeletal-Temporal Transformer (SkateFormer)
SkateFormer partitions joints and frames based on different types of skeletal-temporal relation.
It can selectively focus on key joints and frames crucial for action recognition in an action-adaptive manner.
arXiv Detail & Related papers (2024-03-14T15:55:53Z) - One-Shot Action Recognition via Multi-Scale Spatial-Temporal Skeleton
Matching [77.6989219290789]
One-shot skeleton action recognition aims to learn a skeleton action recognition model with a single training sample.
This paper presents a novel one-shot skeleton action recognition technique that handles skeleton action recognition via multi-scale spatial-temporal feature matching.
arXiv Detail & Related papers (2023-07-14T11:52:10Z) - Skeleton Prototype Contrastive Learning with Multi-Level Graph Relation
Modeling for Unsupervised Person Re-Identification [63.903237777588316]
Person re-identification (re-ID) via 3D skeletons is an important emerging topic with many merits.
Existing solutions rarely explore valuable body-component relations in skeletal structure or motion.
This paper proposes a generic unsupervised Prototype Contrastive learning paradigm with Multi-level Graph Relation learning.
arXiv Detail & Related papers (2022-08-25T00:59:32Z) - SimMC: Simple Masked Contrastive Learning of Skeleton Representations
for Unsupervised Person Re-Identification [63.903237777588316]
We present a generic Simple Masked Contrastive learning (SimMC) framework to learn effective representations from unlabeled 3D skeletons for person re-ID.
Specifically, to fully exploit skeleton features within each skeleton sequence, we first devise a masked prototype contrastive learning (MPC) scheme.
Then, we propose the masked intra-sequence contrastive learning (MIC) to capture intra-sequence pattern consistency between subsequences.
arXiv Detail & Related papers (2022-04-21T00:19:38Z) - Joint-bone Fusion Graph Convolutional Network for Semi-supervised
Skeleton Action Recognition [65.78703941973183]
We propose a novel correlation-driven joint-bone fusion graph convolutional network (CD-JBF-GCN) as an encoder and use a pose prediction head as a decoder.
Specifically, the CD-JBF-GC can explore the motion transmission between the joint stream and the bone stream.
The pose prediction based auto-encoder in the self-supervised training stage allows the network to learn motion representation from unlabeled data.
arXiv Detail & Related papers (2022-02-08T16:03:15Z) - Skeleton-Contrastive 3D Action Representation Learning [35.06361753065124]
This paper strives for self-supervised learning of a feature space suitable for skeleton-based action recognition.
Our approach achieves state-of-the-art performance for self-supervised learning from skeleton data on the challenging PKU and NTU datasets.
arXiv Detail & Related papers (2021-08-08T14:44:59Z) - Skeleton-Aware Networks for Deep Motion Retargeting [83.65593033474384]
We introduce a novel deep learning framework for data-driven motion between skeletons.
Our approach learns how to retarget without requiring any explicit pairing between the motions in the training set.
arXiv Detail & Related papers (2020-05-12T12:51:40Z) - Predictively Encoded Graph Convolutional Network for Noise-Robust
Skeleton-based Action Recognition [6.729108277517129]
We propose a skeleton-based action recognition method which is robust to noise information of given skeleton features.
Our approach achieves outstanding performance when skeleton samples are noised compared with existing state-of-the-art methods.
arXiv Detail & Related papers (2020-03-17T03:37:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.