MoDA: Leveraging Motion Priors from Videos for Advancing Unsupervised Domain Adaptation in Semantic Segmentation
- URL: http://arxiv.org/abs/2309.11711v2
- Date: Mon, 15 Apr 2024 15:26:29 GMT
- Title: MoDA: Leveraging Motion Priors from Videos for Advancing Unsupervised Domain Adaptation in Semantic Segmentation
- Authors: Fei Pan, Xu Yin, Seokju Lee, Axi Niu, Sungeui Yoon, In So Kweon,
- Abstract summary: This study introduces a different UDA scenarios where the target domain contains unlabeled video frames.
We design a textbfMotion-guided textbfDomain textbfAdaptive semantic segmentation framework (MoDA)
MoDA harnesses the self-supervised object motion cues to facilitate cross-domain alignment for segmentation task.
- Score: 61.4598392934287
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised domain adaptation (UDA) has been a potent technique to handle the lack of annotations in the target domain, particularly in semantic segmentation task. This study introduces a different UDA scenarios where the target domain contains unlabeled video frames. Drawing upon recent advancements of self-supervised learning of the object motion from unlabeled videos with geometric constraint, we design a \textbf{Mo}tion-guided \textbf{D}omain \textbf{A}daptive semantic segmentation framework (MoDA). MoDA harnesses the self-supervised object motion cues to facilitate cross-domain alignment for segmentation task. First, we present an object discovery module to localize and segment target moving objects using object motion information. Then, we propose a semantic mining module that takes the object masks to refine the pseudo labels in the target domain. Subsequently, these high-quality pseudo labels are used in the self-training loop to bridge the cross-domain gap. On domain adaptive video and image segmentation experiments, MoDA shows the effectiveness utilizing object motion as guidance for domain alignment compared with optical flow information. Moreover, MoDA exhibits versatility as it can complement existing state-of-the-art UDA approaches. Code at https://github.com/feipanir/MoDA.
Related papers
- MICDrop: Masking Image and Depth Features via Complementary Dropout for Domain-Adaptive Semantic Segmentation [155.0797148367653]
Unsupervised Domain Adaptation (UDA) is the task of bridging the domain gap between a labeled source domain and an unlabeled target domain.
We propose to leverage geometric information, i.e., depth predictions, as depth discontinuities often coincide with segmentation boundaries.
We show that our method can be plugged into various recent UDA methods and consistently improve results across standard UDA benchmarks.
arXiv Detail & Related papers (2024-08-29T12:15:10Z) - Exploiting Instance-based Mixed Sampling via Auxiliary Source Domain
Supervision for Domain-adaptive Action Detection [75.38704117155909]
We propose a novel domain adaptive action detection approach and a new adaptation protocol.
Self-training combined with cross-domain mixed sampling has shown remarkable performance gain in UDA context.
We name our proposed framework as domain-adaptive action instance mixing (DA-AIM)
arXiv Detail & Related papers (2022-09-28T22:03:25Z) - Continual Unsupervised Domain Adaptation for Semantic Segmentation using
a Class-Specific Transfer [9.46677024179954]
segmentation models do not generalize to unseen domains.
We propose a light-weight style transfer framework that incorporates two class-conditional AdaIN layers.
We extensively validate our approach on a synthetic sequence and further propose a challenging sequence consisting of real domains.
arXiv Detail & Related papers (2022-08-12T21:30:49Z) - Discover, Hallucinate, and Adapt: Open Compound Domain Adaptation for
Semantic Segmentation [91.30558794056056]
Unsupervised domain adaptation (UDA) for semantic segmentation has been attracting attention recently.
We present a novel framework based on three main design principles: discover, hallucinate, and adapt.
We evaluate our solution on standard benchmark GTA to C-driving, and achieved new state-of-the-art results.
arXiv Detail & Related papers (2021-10-08T13:20:09Z) - Get away from Style: Category-Guided Domain Adaptation for Semantic
Segmentation [15.002381934551359]
Unsupervised domain adaptation (UDA) becomes more and more popular in tackling real-world problems without ground truth of the target domain.
In this paper, we focus on UDA for semantic segmentation task.
We propose a style-independent content feature extraction mechanism to keep the style information of extracted features in the similar space.
Secondly, to keep the balance of pseudo labels on each category, we propose a category-guided threshold mechanism to choose category-wise pseudo labels for self-supervised learning.
arXiv Detail & Related papers (2021-03-29T10:00:50Z) - Domain Adaptive Semantic Segmentation Using Weak Labels [115.16029641181669]
We propose a novel framework for domain adaptation in semantic segmentation with image-level weak labels in the target domain.
We develop a weak-label classification module to enforce the network to attend to certain categories.
In experiments, we show considerable improvements with respect to the existing state-of-the-arts in UDA and present a new benchmark in the WDA setting.
arXiv Detail & Related papers (2020-07-30T01:33:57Z) - MADAN: Multi-source Adversarial Domain Aggregation Network for Domain
Adaptation [58.38749495295393]
Domain adaptation aims to learn a transferable model to bridge the domain shift between one labeled source domain and another sparsely labeled or unlabeled target domain.
Recent multi-source domain adaptation (MDA) methods do not consider the pixel-level alignment between sources and target.
We propose a novel MDA framework to address these challenges.
arXiv Detail & Related papers (2020-02-19T21:22:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.