Identification of pneumonia on chest x-ray images through machine
learning
- URL: http://arxiv.org/abs/2309.11995v1
- Date: Thu, 21 Sep 2023 12:10:22 GMT
- Title: Identification of pneumonia on chest x-ray images through machine
learning
- Authors: Eduardo Augusto Roeder
- Abstract summary: The software was developed as a computational model based on machine learning using transfer learning technique.
Images were collected from a database available online with children's chest X-rays images taken at a hospital in China.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pneumonia is the leading infectious cause of infant death in the world. When
identified early, it is possible to alter the prognosis of the patient, one
could use imaging exams to help in the diagnostic confirmation. Performing and
interpreting the exams as soon as possible is vital for a good treatment, with
the most common exam for this pathology being chest X-ray. The objective of
this study was to develop a software that identify the presence or absence of
pneumonia in chest radiographs. The software was developed as a computational
model based on machine learning using transfer learning technique. For the
training process, images were collected from a database available online with
children's chest X-rays images taken at a hospital in China. After training,
the model was then exposed to new images, achieving relevant results on
identifying such pathology, reaching 98% sensitivity and 97.3% specificity for
the sample used for testing. It can be concluded that it is possible to develop
a software that identifies pneumonia in chest X-ray images.
Related papers
- Pneumonia Detection on chest X-ray images Using Ensemble of Deep
Convolutional Neural Networks [7.232767871756102]
This paper presents a computer-aided classification of pneumonia, coined as Ensemble Learning (EL), to simplify the diagnosis process on chest X-ray images.
Our proposal is based on Convolutional Neural Network (CNN) models, which are pre-trained CNN models that have been recently employed to enhance the performance of many medical tasks instead of training CNN models from scratch.
The proposed EL approach outperforms other existing state-of-the-art methods, and it obtains an accuracy of 93.91% and a F1-Score of 93.88% on the testing phase.
arXiv Detail & Related papers (2023-12-13T08:28:21Z) - Mining Gaze for Contrastive Learning toward Computer-Assisted Diagnosis [61.089776864520594]
We propose eye-tracking as an alternative to text reports for medical images.
By tracking the gaze of radiologists as they read and diagnose medical images, we can understand their visual attention and clinical reasoning.
We introduce the Medical contrastive Gaze Image Pre-training (McGIP) as a plug-and-play module for contrastive learning frameworks.
arXiv Detail & Related papers (2023-12-11T02:27:45Z) - Prediction of Pneumonia and COVID-19 Using Deep Neural Networks [0.0]
We propose machine-learning techniques for predicting Pneumonia from chest X-ray images.
DenseNet121 outperforms other models, achieving an accuracy rate of 99.58%.
arXiv Detail & Related papers (2023-08-20T21:26:37Z) - Long-Tailed Classification of Thorax Diseases on Chest X-Ray: A New
Benchmark Study [75.05049024176584]
We present a benchmark study of the long-tailed learning problem in the specific domain of thorax diseases on chest X-rays.
We focus on learning from naturally distributed chest X-ray data, optimizing classification accuracy over not only the common "head" classes, but also the rare yet critical "tail" classes.
The benchmark consists of two chest X-ray datasets for 19- and 20-way thorax disease classification, containing classes with as many as 53,000 and as few as 7 labeled training images.
arXiv Detail & Related papers (2022-08-29T04:34:15Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - Searching for Pneumothorax in X-Ray Images Using Autoencoded Deep
Features [5.868569999949525]
Pneumothorax is typically detected on a chest X-ray image through visual inspection by radiologists.
We developed the Autoencoding Thorax Net (short AutoThorax-Net) for image search in chest compressing three inputs.
We achieved 92% AUC accuracy for a semi-automated search in 194,608 images (pneumothorax and normal) and 82% AUC accuracy for fully automated search in 551,383 images (normal, pneumothorax and many other chest diseases)
arXiv Detail & Related papers (2021-02-11T16:21:06Z) - Pneumonia Detection on Chest X-ray using Radiomic Features and
Contrastive Learning [26.031452674698787]
We propose a novel framework that leverages radiomics features and contrastive learning to detect pneumonia in chest X-ray.
Experiments on the RSNA Pneumonia Detection Challenge dataset show that our model achieves superior results to several state-of-the-art models.
arXiv Detail & Related papers (2021-01-12T02:52:24Z) - Searching for Pneumothorax in Half a Million Chest X-Ray Images [0.0]
Pneumothorax, a collapsed or dropped lung, is a fatal condition typically detected on a chest X-ray by an experienced radiologist.
In this study, we explored the use of image search to classify pneumothorax among chest X-ray images.
It is the first study to demonstrate that deep pretrained features can be used for CBIR of pneumothorax in half a million chest X-ray images.
arXiv Detail & Related papers (2020-07-30T13:03:52Z) - Deep Learning for Automatic Pneumonia Detection [72.55423549641714]
Pneumonia is the leading cause of death among young children and one of the top mortality causes worldwide.
Computer-aided diagnosis systems showed the potential for improving diagnostic accuracy.
We develop the computational approach for pneumonia regions detection based on single-shot detectors, squeeze-and-excitation deep convolution neural networks, augmentations and multi-task learning.
arXiv Detail & Related papers (2020-05-28T10:54:34Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z) - Y-Net for Chest X-Ray Preprocessing: Simultaneous Classification of
Geometry and Segmentation of Annotations [70.0118756144807]
This work introduces a general pre-processing step for chest x-ray input into machine learning algorithms.
A modified Y-Net architecture based on the VGG11 encoder is used to simultaneously learn geometric orientation and segmentation of radiographs.
Results were evaluated by expert clinicians, with acceptable geometry in 95.8% and annotation mask in 96.2%, compared to 27.0% and 34.9% respectively in control images.
arXiv Detail & Related papers (2020-05-08T02:16:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.