SQUARE: Automatic Question Answering Evaluation using Multiple Positive
and Negative References
- URL: http://arxiv.org/abs/2309.12250v1
- Date: Thu, 21 Sep 2023 16:51:30 GMT
- Title: SQUARE: Automatic Question Answering Evaluation using Multiple Positive
and Negative References
- Authors: Matteo Gabburo, Siddhant Garg, Rik Koncel Kedziorski, Alessandro
Moschitti
- Abstract summary: We propose a new evaluation metric: SQuArE (Sentence-level QUestion AnsweRing Evaluation)
We evaluate SQuArE on both sentence-level extractive (Answer Selection) and generative (GenQA) QA systems.
- Score: 73.67707138779245
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Evaluation of QA systems is very challenging and expensive, with the most
reliable approach being human annotations of correctness of answers for
questions. Recent works (AVA, BEM) have shown that transformer LM encoder based
similarity metrics transfer well for QA evaluation, but they are limited by the
usage of a single correct reference answer. We propose a new evaluation metric:
SQuArE (Sentence-level QUestion AnsweRing Evaluation), using multiple reference
answers (combining multiple correct and incorrect references) for sentence-form
QA. We evaluate SQuArE on both sentence-level extractive (Answer Selection) and
generative (GenQA) QA systems, across multiple academic and industrial
datasets, and show that it outperforms previous baselines and obtains the
highest correlation with human annotations.
Related papers
- LINKAGE: Listwise Ranking among Varied-Quality References for Non-Factoid QA Evaluation via LLMs [61.57691505683534]
Non-Factoid (NF) Question Answering (QA) is challenging to evaluate due to diverse potential answers and no objective criterion.
Large Language Models (LLMs) have been resorted to for NFQA evaluation due to their compelling performance on various NLP tasks.
We propose a novel listwise NFQA evaluation approach, that utilizes LLMs to rank candidate answers in a list of reference answers sorted by descending quality.
arXiv Detail & Related papers (2024-09-23T06:42:21Z) - An Empirical Comparison of LM-based Question and Answer Generation
Methods [79.31199020420827]
Question and answer generation (QAG) consists of generating a set of question-answer pairs given a context.
In this paper, we establish baselines with three different QAG methodologies that leverage sequence-to-sequence language model (LM) fine-tuning.
Experiments show that an end-to-end QAG model, which is computationally light at both training and inference times, is generally robust and outperforms other more convoluted approaches.
arXiv Detail & Related papers (2023-05-26T14:59:53Z) - RQUGE: Reference-Free Metric for Evaluating Question Generation by
Answering the Question [29.18544401904503]
We propose a new metric, RQUGE, based on the answerability of the candidate question given the context.
We demonstrate that RQUGE has a higher correlation with human judgment without relying on the reference question.
arXiv Detail & Related papers (2022-11-02T21:10:09Z) - Improving Unsupervised Question Answering via Summarization-Informed
Question Generation [47.96911338198302]
Question Generation (QG) is the task of generating a plausible question for a passage, answer> pair.
We make use of freely available news summary data, transforming declarative sentences into appropriate questions using dependency parsing, named entity recognition and semantic role labeling.
The resulting questions are then combined with the original news articles to train an end-to-end neural QG model.
arXiv Detail & Related papers (2021-09-16T13:08:43Z) - Generating Diverse and Consistent QA pairs from Contexts with
Information-Maximizing Hierarchical Conditional VAEs [62.71505254770827]
We propose a conditional variational autoencoder (HCVAE) for generating QA pairs given unstructured texts as contexts.
Our model obtains impressive performance gains over all baselines on both tasks, using only a fraction of data for training.
arXiv Detail & Related papers (2020-05-28T08:26:06Z) - KPQA: A Metric for Generative Question Answering Using Keyphrase Weights [64.54593491919248]
KPQA-metric is a new metric for evaluating correctness of generative question answering systems.
Our new metric assigns different weights to each token via keyphrase prediction.
We show that our proposed metric has a significantly higher correlation with human judgments than existing metrics.
arXiv Detail & Related papers (2020-05-01T03:24:36Z) - Asking and Answering Questions to Evaluate the Factual Consistency of
Summaries [80.65186293015135]
We propose an automatic evaluation protocol called QAGS (pronounced "kags") to identify factual inconsistencies in a generated summary.
QAGS is based on the intuition that if we ask questions about a summary and its source, we will receive similar answers if the summary is factually consistent with the source.
We believe QAGS is a promising tool in automatically generating usable and factually consistent text.
arXiv Detail & Related papers (2020-04-08T20:01:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.