Methods for generating and evaluating synthetic longitudinal patient data: a systematic review
- URL: http://arxiv.org/abs/2309.12380v3
- Date: Mon, 02 Dec 2024 12:36:45 GMT
- Title: Methods for generating and evaluating synthetic longitudinal patient data: a systematic review
- Authors: Katariina Perkonoja, Kari Auranen, Joni Virta,
- Abstract summary: The rapid growth in data availability has facilitated research and development, yet not all industries have benefited equally due to legal and privacy constraints.
The healthcare sector faces significant challenges in utilizing patient data because of concerns about data security and confidentiality.
To address this, various privacy-preserving methods, including synthetic data generation, have been proposed.
- Score: 0.0
- License:
- Abstract: The rapid growth in data availability has facilitated research and development, yet not all industries have benefited equally due to legal and privacy constraints. The healthcare sector faces significant challenges in utilizing patient data because of concerns about data security and confidentiality. To address this, various privacy-preserving methods, including synthetic data generation, have been proposed. Synthetic data replicate existing data as closely as possible, acting as a proxy for sensitive information. While patient data are often longitudinal, this aspect remains underrepresented in existing reviews of synthetic data generation in healthcare. This paper maps and describes methods for generating and evaluating synthetic longitudinal patient data in real-life settings through a systematic literature review, conducted following the PRISMA guidelines and incorporating data from five databases up to May 2024. Thirty-nine methods were identified, with four addressing all challenges of longitudinal data generation, though none included privacy-preserving mechanisms. Resemblance was evaluated in most studies, utility in the majority, and privacy in just over half. Only a small fraction of studies assessed all three aspects. Our findings highlight the need for further research in this area.
Related papers
- Second FRCSyn-onGoing: Winning Solutions and Post-Challenge Analysis to Improve Face Recognition with Synthetic Data [104.30479583607918]
2nd FRCSyn-onGoing challenge is based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024.
We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition.
arXiv Detail & Related papers (2024-12-02T11:12:01Z) - Tabular Data Synthesis with Differential Privacy: A Survey [24.500349285858597]
Data sharing is a prerequisite for collaborative innovation, enabling organizations to leverage diverse datasets for deeper insights.
Data synthesis tackles this by generating artificial datasets that preserve the statistical characteristics of real data.
Differentially private data synthesis has emerged as a promising approach to privacy-aware data sharing.
arXiv Detail & Related papers (2024-11-04T06:32:48Z) - A primer on synthetic health data [0.2770822269241974]
Recent advances in deep generative models have greatly expanded the potential to create realistic synthetic health datasets.
These synthetic datasets aim to preserve the characteristics, patterns, and overall scientific conclusions without disclosing patient identity or sensitive information.
However, many questions and challenges remain, including how to consistently evaluate a synthetic dataset's similarity and predictive utility.
arXiv Detail & Related papers (2024-01-31T08:13:35Z) - Scaling While Privacy Preserving: A Comprehensive Synthetic Tabular Data
Generation and Evaluation in Learning Analytics [0.412484724941528]
Privacy poses a significant obstacle to the progress of learning analytics (LA), presenting challenges like inadequate anonymization and data misuse.
Synthetic data emerges as a potential remedy, offering robust privacy protection.
Prior LA research on synthetic data lacks thorough evaluation, essential for assessing the delicate balance between privacy and data utility.
arXiv Detail & Related papers (2024-01-12T20:27:55Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - SoK: Privacy-Preserving Data Synthesis [72.92263073534899]
This paper focuses on privacy-preserving data synthesis (PPDS) by providing a comprehensive overview, analysis, and discussion of the field.
We put forth a master recipe that unifies two prominent strands of research in PPDS: statistical methods and deep learning (DL)-based methods.
arXiv Detail & Related papers (2023-07-05T08:29:31Z) - Synthetic data generation for a longitudinal cohort study -- Evaluation,
method extension and reproduction of published data analysis results [0.32593385688760446]
In the health sector, access to individual-level data is often challenging due to privacy concerns.
A promising alternative is the generation of fully synthetic data.
In this study, we use a state-of-the-art synthetic data generation method.
arXiv Detail & Related papers (2023-05-12T13:13:55Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
Synthetic data may become a dominant force in the machine learning world, promising a future where datasets can be tailored to individual needs.
We discuss which fundamental challenges the community needs to overcome for wider relevance and application of synthetic data.
arXiv Detail & Related papers (2023-04-07T16:38:40Z) - Fidelity and Privacy of Synthetic Medical Data [0.0]
The digitization of medical records ushered in a new era of big data to clinical science.
The need to share individual-level medical data continues to grow, and has never been more urgent.
enthusiasm for the use of big data has been tempered by a fully appropriate concern for patient autonomy and privacy.
arXiv Detail & Related papers (2021-01-18T23:01:27Z) - Hide-and-Seek Privacy Challenge [88.49671206936259]
The NeurIPS 2020 Hide-and-Seek Privacy Challenge is a novel two-tracked competition to accelerate progress in tackling both problems.
In our head-to-head format, participants in the synthetic data generation track (i.e. "hiders") and the patient re-identification track (i.e. "seekers") are directly pitted against each other by way of a new, high-quality intensive care time-series dataset.
arXiv Detail & Related papers (2020-07-23T15:50:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.