Measurement-induced phase transition for free fermions above one dimension
- URL: http://arxiv.org/abs/2309.12405v3
- Date: Mon, 18 Mar 2024 12:17:26 GMT
- Title: Measurement-induced phase transition for free fermions above one dimension
- Authors: Igor Poboiko, Igor V. Gornyi, Alexander D. Mirlin,
- Abstract summary: Theory of the measurement-induced entanglement phase transition for free-fermion models in $d>1$ dimensions is developed.
Critical point separates a gapless phase with $elld-1 ln ell$ scaling of the second cumulant of the particle number and of the entanglement entropy.
- Score: 46.176861415532095
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A theory of the measurement-induced entanglement phase transition for free-fermion models in $d>1$ dimensions is developed. The critical point separates a gapless phase with $\ell^{d-1} \ln \ell$ scaling of the second cumulant of the particle number and of the entanglement entropy and an area-law phase with $\ell^{d-1}$ scaling, where $\ell$ is a size of the subsystem. The problem is mapped onto an SU($R$) replica non-linear sigma model in $d+1$ dimensions, with $R\to 1$. Using renormalization-group analysis, we calculate critical indices in one-loop approximation justified for $d = 1+ \epsilon$ with $\epsilon \ll 1$. Further, we carry out a numerical study of the transition for a $d=2$ model on a square lattice, determine numerically the critical point, and estimate the critical index of the correlation length, $\nu \approx 1.4$.
Related papers
- Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - Measurement-induced phase transition in a single-body tight-binding model [0.0]
We study the statistical properties of a single free quantum particle evolving coherently on a discrete lattice in $rm d$ spatial dimensions.
Our numerical results indicate that the system undergoes a Measurement-induced Phase Transition (MiPT) for $rm d>1$ from a $textitdelocalized$ to a $textitlocalized$ phase.
arXiv Detail & Related papers (2023-09-26T16:03:09Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Theory of free fermions under random projective measurements [43.04146484262759]
We develop an analytical approach to the study of one-dimensional free fermions subject to random projective measurements of local site occupation numbers.
We derive a non-linear sigma model (NLSM) as an effective field theory of the problem.
arXiv Detail & Related papers (2023-04-06T15:19:33Z) - Efficient Sampling of Stochastic Differential Equations with Positive
Semi-Definite Models [91.22420505636006]
This paper deals with the problem of efficient sampling from a differential equation, given the drift function and the diffusion matrix.
It is possible to obtain independent and identically distributed (i.i.d.) samples at precision $varepsilon$ with a cost that is $m2 d log (1/varepsilon)$
Our results suggest that as the true solution gets smoother, we can circumvent the curse of dimensionality without requiring any sort of convexity.
arXiv Detail & Related papers (2023-03-30T02:50:49Z) - Phase structure of the CP(1) model in the presence of a topological
$\theta$-term [0.0]
We numerically study the phase structure of the CP(1) model in the presence of a topological $theta$-term.
We compute the free energy for inverse couplings ranging from $0leq beta leq 1.1$ and find a CP-violating, first-order phase transition at $theta=pi$.
arXiv Detail & Related papers (2021-07-29T17:53:50Z) - Entanglement scaling for $\lambda\phi_2^4$ [0.0]
We show that the order parameter $phi$, the correlation length $xi$ and quantities like $phi3$ and the entanglement entropy exhibit useful double scaling properties.
We find the value $alpha_c=11.09698(31)$ for the critical point, improving on previous results.
arXiv Detail & Related papers (2021-04-21T14:43:12Z) - Exact one- and two-site reduced dynamics in a finite-size quantum Ising
ring after a quench: A semi-analytical approach [4.911435444514558]
We study the non-equilibrium dynamics of a homogeneous quantum Ising ring after a quench.
The long-timescale reduced dynamics of a single spin and of two nearest-neighbor spins is studied.
arXiv Detail & Related papers (2021-03-23T13:14:50Z) - Variance-Aware Confidence Set: Variance-Dependent Bound for Linear
Bandits and Horizon-Free Bound for Linear Mixture MDP [76.94328400919836]
We show how to construct variance-aware confidence sets for linear bandits and linear mixture Decision Process (MDP)
For linear bandits, we obtain an $widetildeO(mathrmpoly(d)sqrt1 + sum_i=1Ksigma_i2) regret bound, where $d is the feature dimension.
For linear mixture MDP, we obtain an $widetildeO(mathrmpoly(d)sqrtK)$ regret bound, where
arXiv Detail & Related papers (2021-01-29T18:57:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.