Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding
- URL: http://arxiv.org/abs/2309.12657v2
- Date: Sat, 13 Jan 2024 10:35:36 GMT
- Title: Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding
- Authors: Jiazhen Wang, Bin Liu, Changtao Miao, Zhiwei Zhao, Wanyi Zhuang, Qi
Chu, Nenghai Yu
- Abstract summary: We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
- Score: 54.49214267905562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI-synthesized text and images have gained significant attention,
particularly due to the widespread dissemination of multi-modal manipulations
on the internet, which has resulted in numerous negative impacts on society.
Existing methods for multi-modal manipulation detection and grounding primarily
focus on fusing vision-language features to make predictions, while overlooking
the importance of modality-specific features, leading to sub-optimal results.
In this paper, we construct a simple and novel transformer-based framework for
multi-modal manipulation detection and grounding tasks. Our framework
simultaneously explores modality-specific features while preserving the
capability for multi-modal alignment. To achieve this, we introduce
visual/language pre-trained encoders and dual-branch cross-attention (DCA) to
extract and fuse modality-unique features. Furthermore, we design decoupled
fine-grained classifiers (DFC) to enhance modality-specific feature mining and
mitigate modality competition. Moreover, we propose an implicit manipulation
query (IMQ) that adaptively aggregates global contextual cues within each
modality using learnable queries, thereby improving the discovery of forged
details. Extensive experiments on the $\rm DGM^4$ dataset demonstrate the
superior performance of our proposed model compared to state-of-the-art
approaches.
Related papers
- DeepInteraction++: Multi-Modality Interaction for Autonomous Driving [80.8837864849534]
We introduce a novel modality interaction strategy that allows individual per-modality representations to be learned and maintained throughout.
DeepInteraction++ is a multi-modal interaction framework characterized by a multi-modal representational interaction encoder and a multi-modal predictive interaction decoder.
Experiments demonstrate the superior performance of the proposed framework on both 3D object detection and end-to-end autonomous driving tasks.
arXiv Detail & Related papers (2024-08-09T14:04:21Z) - Reliable Object Tracking by Multimodal Hybrid Feature Extraction and Transformer-Based Fusion [18.138433117711177]
We propose a novel multimodal hybrid tracker (MMHT) that utilizes frame-event-based data for reliable single object tracking.
The MMHT model employs a hybrid backbone consisting of an artificial neural network (ANN) and a spiking neural network (SNN) to extract dominant features from different visual modalities.
Extensive experiments demonstrate that the MMHT model exhibits competitive performance in comparison with other state-of-the-art methods.
arXiv Detail & Related papers (2024-05-28T07:24:56Z) - U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
We introduce U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semantics.
We employ feature fusion at multiple scales to ensure the effective extraction and integration of both global and local features.
Experimental results demonstrate that our approach achieves superior performance across multiple datasets.
arXiv Detail & Related papers (2024-05-24T08:58:48Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
Multimodal emotion recognition based on audio and video data is important for real-world applications.
Recent methods have focused on exploiting advances of self-supervised learning (SSL) for pre-training of strong multimodal encoders.
We propose a different perspective on the problem and investigate the advancement of multimodal DFER performance by adapting SSL-pre-trained disjoint unimodal encoders.
arXiv Detail & Related papers (2024-04-13T13:39:26Z) - Cross-domain Multi-modal Few-shot Object Detection via Rich Text [21.36633828492347]
Cross-modal feature extraction and integration have led to steady performance improvements in few-shot learning tasks.
We study the Cross-Domain few-shot generalization of MM-OD (CDMM-FSOD) and propose a meta-learning based multi-modal few-shot object detection method.
arXiv Detail & Related papers (2024-03-24T15:10:22Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - What Makes for Robust Multi-Modal Models in the Face of Missing
Modalities? [35.19295402483624]
We model the scenarios of multi-modal models encountering missing modalities from an information-theoretic perspective.
We introduce Uni-Modal Ensemble with Missing Modality Adaptation (UME-MMA)
UME-MMA employs uni-modal pre-trained weights for the multi-modal model to enhance feature extraction and utilizes missing modality data augmentation techniques to better adapt to situations with missing modalities.
arXiv Detail & Related papers (2023-10-10T07:47:57Z) - Mutual Information Regularization for Weakly-supervised RGB-D Salient
Object Detection [33.210575826086654]
We present a weakly-supervised RGB-D salient object detection model via supervision.
We focus on effective multimodal representation learning via inter-modal mutual information regularization.
arXiv Detail & Related papers (2023-06-06T12:36:57Z) - Exploiting modality-invariant feature for robust multimodal emotion
recognition with missing modalities [76.08541852988536]
We propose to use invariant features for a missing modality imagination network (IF-MMIN)
We show that the proposed model outperforms all baselines and invariantly improves the overall emotion recognition performance under uncertain missing-modality conditions.
arXiv Detail & Related papers (2022-10-27T12:16:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.