TOPFORMER: Topology-Aware Authorship Attribution of Deepfake Texts with Diverse Writing Styles
- URL: http://arxiv.org/abs/2309.12934v3
- Date: Wed, 02 Oct 2024 15:04:59 GMT
- Title: TOPFORMER: Topology-Aware Authorship Attribution of Deepfake Texts with Diverse Writing Styles
- Authors: Adaku Uchendu, Thai Le, Dongwon Lee,
- Abstract summary: Recent advances in Large Language Models (LLMs) have enabled the generation of open-ended high-quality texts, that are non-trivial to distinguish from human-written texts.
Users with malicious intent can easily use these open-sourced LLMs to generate harmful texts and dis/misinformation at scale.
To mitigate this problem, a computational method to determine if a given text is a deepfake text or not is desired.
We propose TopFormer to improve existing AA solutions by capturing more linguistic patterns in deepfake texts.
- Score: 14.205559299967423
- License:
- Abstract: Recent advances in Large Language Models (LLMs) have enabled the generation of open-ended high-quality texts, that are non-trivial to distinguish from human-written texts. We refer to such LLM-generated texts as deepfake texts. There are currently over 72K text generation models in the huggingface model repo. As such, users with malicious intent can easily use these open-sourced LLMs to generate harmful texts and dis/misinformation at scale. To mitigate this problem, a computational method to determine if a given text is a deepfake text or not is desired--i.e., Turing Test (TT). In particular, in this work, we investigate the more general version of the problem, known as Authorship Attribution (AA), in a multi-class setting--i.e., not only determining if a given text is a deepfake text or not but also being able to pinpoint which LLM is the author. We propose TopFormer to improve existing AA solutions by capturing more linguistic patterns in deepfake texts by including a Topological Data Analysis (TDA) layer in the Transformer-based model. We show the benefits of having a TDA layer when dealing with imbalanced, and multi-style datasets, by extracting TDA features from the reshaped $pooled\_output$ of our backbone as input. This Transformer-based model captures contextual representations (i.e., semantic and syntactic linguistic features), while TDA captures the shape and structure of data (i.e., linguistic structures). Finally, TopFormer, outperforms all baselines in all 3 datasets, achieving up to 7\% increase in Macro F1 score. Our code and datasets are available at: https://github.com/AdaUchendu/topformer
Related papers
- Detecting AI-Generated Texts in Cross-Domains [3.2245324254437846]
We train a ranking classifier called RoBERTa-Ranker as a baseline model.
We then present a method to fine-tune RoBERTa-Ranker that requires only a small amount of labeled data in a new domain.
Experiments show that this fine-tuned domain-aware model outperforms the popular DetectGPT and GPTZero.
arXiv Detail & Related papers (2024-10-17T18:43:30Z) - TextDiffuser-2: Unleashing the Power of Language Models for Text
Rendering [118.30923824681642]
TextDiffuser-2 aims to unleash the power of language models for text rendering.
We utilize the language model within the diffusion model to encode the position and texts at the line level.
We conduct extensive experiments and incorporate user studies involving human participants as well as GPT-4V.
arXiv Detail & Related papers (2023-11-28T04:02:40Z) - AnyText: Multilingual Visual Text Generation And Editing [18.811943975513483]
We introduce AnyText, a diffusion-based multilingual visual text generation and editing model.
AnyText can write characters in multiple languages, to the best of our knowledge, this is the first work to address multilingual visual text generation.
We contribute the first large-scale multilingual text images dataset, AnyWord-3M, containing 3 million image-text pairs with OCR annotations in multiple languages.
arXiv Detail & Related papers (2023-11-06T12:10:43Z) - Text Embeddings Reveal (Almost) As Much As Text [86.5822042193058]
We investigate the problem of embedding textitinversion, reconstructing the full text represented in dense text embeddings.
We find that although a na"ive model conditioned on the embedding performs poorly, a multi-step method that iteratively corrects and re-embeds text is able to recover $92%$ of $32text-token$ text inputs exactly.
arXiv Detail & Related papers (2023-10-10T17:39:03Z) - Copy Is All You Need [66.00852205068327]
We formulate text generation as progressively copying text segments from an existing text collection.
Our approach achieves better generation quality according to both automatic and human evaluations.
Our approach attains additional performance gains by simply scaling up to larger text collections.
arXiv Detail & Related papers (2023-07-13T05:03:26Z) - A Benchmark Corpus for the Detection of Automatically Generated Text in
Academic Publications [0.02578242050187029]
This paper presents two datasets comprised of artificially generated research content.
In the first case, the content is completely generated by the GPT-2 model after a short prompt extracted from original papers.
The partial or hybrid dataset is created by replacing several sentences of abstracts with sentences that are generated by the Arxiv-NLP model.
We evaluate the quality of the datasets comparing the generated texts to aligned original texts using fluency metrics such as BLEU and ROUGE.
arXiv Detail & Related papers (2022-02-04T08:16:56Z) - How much do language models copy from their training data? Evaluating
linguistic novelty in text generation using RAVEN [63.79300884115027]
Current language models can generate high-quality text.
Are they simply copying text they have seen before, or have they learned generalizable linguistic abstractions?
We introduce RAVEN, a suite of analyses for assessing the novelty of generated text.
arXiv Detail & Related papers (2021-11-18T04:07:09Z) - Rethinking Text Segmentation: A Novel Dataset and A Text-Specific
Refinement Approach [34.63444886780274]
Text segmentation is a prerequisite in real-world text-related tasks.
We introduce Text Refinement Network (TexRNet), a novel text segmentation approach.
TexRNet consistently improves text segmentation performance by nearly 2% compared to other state-of-the-art segmentation methods.
arXiv Detail & Related papers (2020-11-27T22:50:09Z) - Partially-Aligned Data-to-Text Generation with Distant Supervision [69.15410325679635]
We propose a new generation task called Partially-Aligned Data-to-Text Generation (PADTG)
It is more practical since it utilizes automatically annotated data for training and thus considerably expands the application domains.
Our framework outperforms all baseline models as well as verify the feasibility of utilizing partially-aligned data.
arXiv Detail & Related papers (2020-10-03T03:18:52Z) - POINTER: Constrained Progressive Text Generation via Insertion-based
Generative Pre-training [93.79766670391618]
We present POINTER, a novel insertion-based approach for hard-constrained text generation.
The proposed method operates by progressively inserting new tokens between existing tokens in a parallel manner.
The resulting coarse-to-fine hierarchy makes the generation process intuitive and interpretable.
arXiv Detail & Related papers (2020-05-01T18:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.