Enhancing Multi-Objective Optimization through Machine Learning-Supported Multiphysics Simulation
- URL: http://arxiv.org/abs/2309.13179v2
- Date: Wed, 3 Apr 2024 13:21:45 GMT
- Title: Enhancing Multi-Objective Optimization through Machine Learning-Supported Multiphysics Simulation
- Authors: Diego Botache, Jens Decke, Winfried Ripken, Abhinay Dornipati, Franz Götz-Hahn, Mohamed Ayeb, Bernhard Sick,
- Abstract summary: This paper presents a methodological framework for training, self-optimising, and self-organising surrogate models.
We show that surrogate models can be trained on relatively small amounts of data to approximate the underlying simulations accurately.
- Score: 1.6685829157403116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a methodological framework for training, self-optimising, and self-organising surrogate models to approximate and speed up multiobjective optimisation of technical systems based on multiphysics simulations. At the hand of two real-world datasets, we illustrate that surrogate models can be trained on relatively small amounts of data to approximate the underlying simulations accurately. Including explainable AI techniques allow for highlighting feature relevancy or dependencies and supporting the possible extension of the used datasets. One of the datasets was created for this paper and is made publicly available for the broader scientific community. Extensive experiments combine four machine learning and deep learning algorithms with an evolutionary optimisation algorithm. The performance of the combined training and optimisation pipeline is evaluated by verifying the generated Pareto-optimal results using the ground truth simulations. The results from our pipeline and a comprehensive evaluation strategy show the potential for efficiently acquiring solution candidates in multiobjective optimisation tasks by reducing the number of simulations and conserving a higher prediction accuracy, i.e., with a MAPE score under 5% for one of the presented use cases.
Related papers
- fastHDMI: Fast Mutual Information Estimation for High-Dimensional Data [2.9901605297536027]
We introduce fastHDMI, a Python package designed for efficient variable screening in high-dimensional datasets.
This work pioneers the application of three mutual information estimation methods for neuroimaging variable selection.
arXiv Detail & Related papers (2024-10-14T01:49:53Z) - Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting [16.640336442849282]
We formulate a multi-task optimization problem as a regularization technique to enable single-task models to leverage multi-task learning information.
We derive a closed-form solution for multi-task optimization in the context of linear models.
arXiv Detail & Related papers (2024-06-14T17:59:25Z) - Machine Learning Optimized Approach for Parameter Selection in MESHFREE Simulations [0.0]
Meshfree simulation methods are emerging as compelling alternatives to conventional mesh-based approaches.
We provide a comprehensive overview of our research combining Machine Learning (ML) and Fraunhofer's MESHFREE software.
We introduce a novel ML-optimized approach, using active learning, regression trees, and visualization on MESHFREE simulation data.
arXiv Detail & Related papers (2024-03-20T15:29:59Z) - Simulation-Enhanced Data Augmentation for Machine Learning Pathloss
Prediction [9.664420734674088]
This paper introduces a novel simulation-enhanced data augmentation method for machine learning pathloss prediction.
Our method integrates synthetic data generated from a cellular coverage simulator and independently collected real-world datasets.
The integration of synthetic data significantly improves the generalizability of the model in different environments.
arXiv Detail & Related papers (2024-02-03T00:38:08Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Learning Large-scale Neural Fields via Context Pruned Meta-Learning [60.93679437452872]
We introduce an efficient optimization-based meta-learning technique for large-scale neural field training.
We show how gradient re-scaling at meta-test time allows the learning of extremely high-quality neural fields.
Our framework is model-agnostic, intuitive, straightforward to implement, and shows significant reconstruction improvements for a wide range of signals.
arXiv Detail & Related papers (2023-02-01T17:32:16Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Active Learning Methods for Efficient Hybrid Biophysical Variable
Retrieval [6.093845877765489]
Kernel-based machine learning regression algorithms (MLRAs) are potentially powerful methods for operational biophysical variable retrieval schemes.
They face difficulties in coping with large training datasets.
Active learning (AL) methods enable to select the most informative samples in a dataset.
This letter introduces six AL methods for achieving optimized biophysical variable estimation with a manageable training dataset.
arXiv Detail & Related papers (2020-12-07T08:56:40Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
This paper proposes a set of benchmarks and a framework for the study of various algorithms aimed to transfer models and policies learnt in simulation to the real world.
We conduct experiments on a wide range of well known simulated environments to characterize and offer insights into the performance of different algorithms.
Our analysis can be useful for practitioners working in this area and can help make informed choices about the behavior and main properties of sim-to-real algorithms.
arXiv Detail & Related papers (2020-11-17T22:24:26Z) - AutoSimulate: (Quickly) Learning Synthetic Data Generation [70.82315853981838]
We propose an efficient alternative for optimal synthetic data generation based on a novel differentiable approximation of the objective.
We demonstrate that the proposed method finds the optimal data distribution faster (up to $50times$), with significantly reduced training data generation (up to $30times$) and better accuracy ($+8.7%$) on real-world test datasets than previous methods.
arXiv Detail & Related papers (2020-08-16T11:36:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.