Advancements in 3D Lane Detection Using LiDAR Point Clouds: From Data Collection to Model Development
- URL: http://arxiv.org/abs/2309.13596v3
- Date: Fri, 15 Mar 2024 13:08:32 GMT
- Title: Advancements in 3D Lane Detection Using LiDAR Point Clouds: From Data Collection to Model Development
- Authors: Runkai Zhao, Yuwen Heng, Heng Wang, Yuanda Gao, Shilei Liu, Changhao Yao, Jiawen Chen, Weidong Cai,
- Abstract summary: LiSV-3DLane is a large-scale 3D lane dataset that comprises 20k frames of surround-view LiDAR point clouds with enriched semantic annotation.
We propose a novel LiDAR-based 3D lane detection model, LiLaDet, incorporating the spatial geometry learning of the LiDAR point cloud into Bird's Eye View (BEV) based lane identification.
- Score: 10.78971892551972
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advanced Driver-Assistance Systems (ADAS) have successfully integrated learning-based techniques into vehicle perception and decision-making. However, their application in 3D lane detection for effective driving environment perception is hindered by the lack of comprehensive LiDAR datasets. The sparse nature of LiDAR point cloud data prevents an efficient manual annotation process. To solve this problem, we present LiSV-3DLane, a large-scale 3D lane dataset that comprises 20k frames of surround-view LiDAR point clouds with enriched semantic annotation. Unlike existing datasets confined to a frontal perspective, LiSV-3DLane provides a full 360-degree spatial panorama around the ego vehicle, capturing complex lane patterns in both urban and highway environments. We leverage the geometric traits of lane lines and the intrinsic spatial attributes of LiDAR data to design a simple yet effective automatic annotation pipeline for generating finer lane labels. To propel future research, we propose a novel LiDAR-based 3D lane detection model, LiLaDet, incorporating the spatial geometry learning of the LiDAR point cloud into Bird's Eye View (BEV) based lane identification. Experimental results indicate that LiLaDet outperforms existing camera- and LiDAR-based approaches in the 3D lane detection task on the K-Lane dataset and our LiSV-3DLane.
Related papers
- Multi-Modal Data-Efficient 3D Scene Understanding for Autonomous Driving [58.16024314532443]
We introduce LaserMix++, a framework that integrates laser beam manipulations from disparate LiDAR scans and incorporates LiDAR-camera correspondences to assist data-efficient learning.
Results demonstrate that LaserMix++ outperforms fully supervised alternatives, achieving comparable accuracy with five times fewer annotations.
This substantial advancement underscores the potential of semi-supervised approaches in reducing the reliance on extensive labeled data in LiDAR-based 3D scene understanding systems.
arXiv Detail & Related papers (2024-05-08T17:59:53Z) - 3D Object Detection and High-Resolution Traffic Parameters Extraction
Using Low-Resolution LiDAR Data [14.142956899468922]
This study proposes an innovative framework that alleviates the need for multiple LiDAR systems and simplifies the laborious 3D annotation process.
Using the 2D bounding box detection and extracted height information, this study is able to generate 3D bounding boxes automatically without human intervention.
arXiv Detail & Related papers (2024-01-13T01:22:20Z) - UltraLiDAR: Learning Compact Representations for LiDAR Completion and
Generation [51.443788294845845]
We present UltraLiDAR, a data-driven framework for scene-level LiDAR completion, LiDAR generation, and LiDAR manipulation.
We show that by aligning the representation of a sparse point cloud to that of a dense point cloud, we can densify the sparse point clouds.
By learning a prior over the discrete codebook, we can generate diverse, realistic LiDAR point clouds for self-driving.
arXiv Detail & Related papers (2023-11-02T17:57:03Z) - LiDAR View Synthesis for Robust Vehicle Navigation Without Expert Labels [50.40632021583213]
We propose synthesizing additional LiDAR point clouds from novel viewpoints without physically driving at dangerous positions.
We train a deep learning model, which takes a LiDAR scan as input and predicts the future trajectory as output.
A waypoint controller is then applied to this predicted trajectory to determine the throttle and steering labels of the ego-vehicle.
arXiv Detail & Related papers (2023-08-02T20:46:43Z) - NeRF-LiDAR: Generating Realistic LiDAR Point Clouds with Neural Radiance
Fields [20.887421720818892]
We present NeRF-LIDAR, a novel LiDAR simulation method that leverages real-world information to generate realistic LIDAR point clouds.
We verify the effectiveness of our NeRF-LiDAR by training different 3D segmentation models on the generated LiDAR point clouds.
arXiv Detail & Related papers (2023-04-28T12:41:28Z) - BEV-MAE: Bird's Eye View Masked Autoencoders for Point Cloud
Pre-training in Autonomous Driving Scenarios [51.285561119993105]
We present BEV-MAE, an efficient masked autoencoder pre-training framework for LiDAR-based 3D object detection in autonomous driving.
Specifically, we propose a bird's eye view (BEV) guided masking strategy to guide the 3D encoder learning feature representation.
We introduce a learnable point token to maintain a consistent receptive field size of the 3D encoder.
arXiv Detail & Related papers (2022-12-12T08:15:03Z) - Efficient Spatial-Temporal Information Fusion for LiDAR-Based 3D Moving
Object Segmentation [23.666607237164186]
We propose a novel deep neural network exploiting both spatial-temporal information and different representation modalities of LiDAR scans to improve LiDAR-MOS performance.
Specifically, we first use a range image-based dual-branch structure to separately deal with spatial and temporal information.
We also use a point refinement module via 3D sparse convolution to fuse the information from both LiDAR range image and point cloud representations.
arXiv Detail & Related papers (2022-07-05T17:59:17Z) - PillarGrid: Deep Learning-based Cooperative Perception for 3D Object
Detection from Onboard-Roadside LiDAR [15.195933965761645]
We propose textitPillarGrid, a novel cooperative perception method fusing information from multiple 3D LiDARs.
PillarGrid consists of four main phases: 1) cooperative preprocessing of point clouds, 2) pillar-wise voxelization and feature extraction, 3) grid-wise deep fusion of features from multiple sensors, and 4) convolutional neural network (CNN)-based augmented 3D object detection.
Extensive experimentation shows that PillarGrid outperforms the SOTA single-LiDAR-based 3D object detection methods with respect to both accuracy and range by a large margin.
arXiv Detail & Related papers (2022-03-12T02:28:41Z) - Cirrus: A Long-range Bi-pattern LiDAR Dataset [35.87501129332217]
We introduce Cirrus, a new long-range bi-pattern LiDAR public dataset for autonomous driving tasks.
Our platform is equipped with a high-resolution video camera and a pair of LiDAR sensors with a 250-meter effective range.
In Cirrus, eight categories of objects are exhaustively annotated in the LiDAR point clouds for the entire effective range.
arXiv Detail & Related papers (2020-12-05T03:18:31Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
We propose a self-supervised LiDAR odometry method, dubbed SelfVoxeLO, to tackle these two difficulties.
Specifically, we propose a 3D convolution network to process the raw LiDAR data directly, which extracts features that better encode the 3D geometric patterns.
We evaluate our method's performances on two large-scale datasets, i.e., KITTI and Apollo-SouthBay.
arXiv Detail & Related papers (2020-10-19T09:23:39Z) - LIBRE: The Multiple 3D LiDAR Dataset [54.25307983677663]
We present LIBRE: LiDAR Benchmarking and Reference, a first-of-its-kind dataset featuring 10 different LiDAR sensors.
LIBRE will contribute to the research community to provide a means for a fair comparison of currently available LiDARs.
It will also facilitate the improvement of existing self-driving vehicles and robotics-related software.
arXiv Detail & Related papers (2020-03-13T06:17:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.