Digital Twins and the Future of their Use Enabling Shift Left and Shift Right Cybersecurity Operations
- URL: http://arxiv.org/abs/2309.13612v1
- Date: Sun, 24 Sep 2023 11:20:58 GMT
- Title: Digital Twins and the Future of their Use Enabling Shift Left and Shift Right Cybersecurity Operations
- Authors: Ahmad Mohsin, Helge Janicke, Surya Nepal, David Holmes,
- Abstract summary: Digital Twins (DTs) optimize operations and monitor performance in Smart Critical Systems (SCS) domains like smart grids and manufacturing.
This vision paper outlines intelligent SDT design through innovative techniques, exploring hybrid intelligence with data-driven and rule-based semantic SDT models.
- Score: 15.061739314361871
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digital Twins (DTs), optimize operations and monitor performance in Smart Critical Systems (SCS) domains like smart grids and manufacturing. DT-based cybersecurity solutions are in their infancy, lacking a unified strategy to overcome challenges spanning next three to five decades. These challenges include reliable data accessibility from Cyber-Physical Systems (CPS), operating in unpredictable environments. Reliable data sources are pivotal for intelligent cybersecurity operations aided with underlying modeling capabilities across the SCS lifecycle, necessitating a DT. To address these challenges, we propose Security Digital Twins (SDTs) collecting realtime data from CPS, requiring the Shift Left and Shift Right (SLSR) design paradigm for SDT to implement both design time and runtime cybersecurity operations. Incorporating virtual CPS components (VC) in Cloud/Edge, data fusion to SDT models is enabled with high reliability, providing threat insights and enhancing cyber resilience. VC-enabled SDT ensures accurate data feeds for security monitoring for both design and runtime. This design paradigm shift propagates innovative SDT modeling and analytics for securing future critical systems. This vision paper outlines intelligent SDT design through innovative techniques, exploring hybrid intelligence with data-driven and rule-based semantic SDT models. Various operational use cases are discussed for securing smart critical systems through underlying modeling and analytics capabilities.
Related papers
- A Comparative Analysis of Machine Learning Models for DDoS Detection in IoT Networks [0.0]
It evaluates the efficacy of different machine learning models, such as XGBoost, in detecting DDoS attacks from normal network traffic.
The effectiveness of these models is analyzed, showing how machine learning can greatly enhance IoT security frameworks.
arXiv Detail & Related papers (2024-11-08T12:23:41Z) - CTINEXUS: Leveraging Optimized LLM In-Context Learning for Constructing Cybersecurity Knowledge Graphs Under Data Scarcity [49.657358248788945]
Textual descriptions in cyber threat intelligence (CTI) reports are rich sources of knowledge about cyber threats.
Current CTI extraction methods lack flexibility and generalizability, often resulting in inaccurate and incomplete knowledge extraction.
We propose CTINexus, a novel framework leveraging optimized in-context learning (ICL) of large language models.
arXiv Detail & Related papers (2024-10-28T14:18:32Z) - Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
Industrial Cyber-Physical Systems (ICPSs) are an integral component of modern manufacturing and industries.
By digitizing data throughout the product life cycle, Digital Twins (DTs) in ICPSs enable a shift from current industrial infrastructures to intelligent and adaptive infrastructures.
mechanisms that leverage sensing Industrial Internet of Things (IIoT) devices to share data for the construction of DTs are susceptible to adverse selection problems.
arXiv Detail & Related papers (2024-08-02T10:47:10Z) - Securing Distributed Network Digital Twin Systems Against Model Poisoning Attacks [19.697853431302768]
Digital twins (DTs) embody real-time monitoring, predictive, and enhanced decision-making capabilities.
This study investigates the security challenges in distributed network DT systems, which potentially undermine the reliability of subsequent network applications.
arXiv Detail & Related papers (2024-07-02T03:32:09Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
We propose a novel agent-driven generative semantic communication framework based on reinforcement learning.
In this work, we develop an agent-assisted semantic encoder with cross-modality capability, which can track the semantic changes, channel condition, to perform adaptive semantic extraction and sampling.
The effectiveness of the designed models has been verified using the UA-DETRAC dataset, demonstrating the performance gains of the overall A-GSC framework.
arXiv Detail & Related papers (2024-04-10T13:24:27Z) - Image-based Deep Learning for Smart Digital Twins: a Review [0.0]
Smart Digital twins (SDTs) are being increasingly used to virtually replicate and predict the behaviors of complex physical systems.
Deep learning (DL) models have significantly enhanced the capabilities of SDTs.
This paper focuses on various approaches and associated challenges in developing image-based SDTs.
arXiv Detail & Related papers (2024-01-04T20:17:25Z) - Multi-Tier Computing-Enabled Digital Twin in 6G Networks [50.236861239246835]
In Industry 4.0, industries such as manufacturing, automotive, and healthcare are rapidly adopting DT-based development.
The main challenges to date have been the high demands on communication and computing resources, as well as privacy and security concerns.
To achieve low latency and high security services in the emerging DT, multi-tier computing has been proposed by combining edge/fog computing and cloud computing.
arXiv Detail & Related papers (2023-12-28T13:02:53Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
A digital twin (DT) leverages a virtual representation of the physical world, along with communication (e.g., 6G), computing, and artificial intelligence (AI) technologies to enable many connected intelligence services.
Wireless systems can exploit the paradigm of semantic communication (SC) for facilitating informed decision-making under strict communication constraints.
A novel framework called causal semantic communication (CSC) is proposed for DT-based wireless systems.
arXiv Detail & Related papers (2023-04-25T00:15:00Z) - Adversarial training with informed data selection [53.19381941131439]
Adrial training is the most efficient solution to defend the network against these malicious attacks.
This work proposes a data selection strategy to be applied in the mini-batch training.
The simulation results show that a good compromise can be obtained regarding robustness and standard accuracy.
arXiv Detail & Related papers (2023-01-07T12:09:50Z) - Digital Twin Virtualization with Machine Learning for IoT and Beyond 5G
Networks: Research Directions for Security and Optimal Control [3.1798318618973362]
Digital twin (DT) technologies have emerged as a solution for real-time data-driven modeling of cyber physical systems.
We establish a conceptual layered architecture for a DT framework with decentralized implementation on cloud computing.
We discuss the significance of DT in lowering the risk of development and deployment of innovative technologies on existing system.
arXiv Detail & Related papers (2022-04-05T03:04:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.