Deriving Product Line Requirements: the RED-PL Guidance Approach
- URL: http://arxiv.org/abs/2309.13974v1
- Date: Mon, 25 Sep 2023 09:16:45 GMT
- Title: Deriving Product Line Requirements: the RED-PL Guidance Approach
- Authors: Olfa Djebbi (CRI), Camille Salinesi (CRI), Daniel Diaz (CRI)
- Abstract summary: This paper presents a method, RED-PL, that intends to support requirements derivation.
The originality of the proposed approach is that (i) it is user-oriented, (ii) it guides product requirements elicitation andderivation as a decision making activity, and (iii) it provides systematic and interactive guidance assistinganalysts in taking decisions about requirements.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Product lines (PL) modeling have proven to be an effective approach to reuse
in software development.Several variability approaches were developed to plan
requirements reuse, but only little of them actuallyaddress the issue of
deriving product requirements.This paper presents a method, RED-PL that intends
to support requirements derivation. The originality ofthe proposed approach is
that (i) it is user-oriented, (ii) it guides product requirements elicitation
andderivation as a decision making activity, and (iii) it provides systematic
and interactive guidance assistinganalysts in taking decisions about
requirements. The RED-PL methodological process was validatedin an industrial
setting by considering the requirement engineering phase of a product line of
blood analyzers.
Related papers
- A Methodology for Evaluating RAG Systems: A Case Study On Configuration Dependency Validation [6.544757635738911]
Retrieval-augmented generation (RAG) is an umbrella of different components, design decisions, and domain-specific adaptations.
There is currently no generally accepted methodology for RAG evaluation despite a growing interest in this technology.
We propose a first blueprint of a methodology for a sound and reliable evaluation of RAG systems.
arXiv Detail & Related papers (2024-10-11T13:36:13Z) - KaPQA: Knowledge-Augmented Product Question-Answering [59.096607961704656]
We introduce two product question-answering (QA) datasets focused on Adobe Acrobat and Photoshop products.
We also propose a novel knowledge-driven RAG-QA framework to enhance the performance of the models in the product QA task.
arXiv Detail & Related papers (2024-07-22T22:14:56Z) - ToffA-DSPL: an approach of trade-off analysis for designing dynamic software product lines [3.623080116477751]
We propose an approach of Trade-off Analysis for DSPL at design-time, named ToffA-DSPL.
It deals with the configuration selection process considering interactions between NFRs and contexts.
In general, the configurations suggested by ToffA-DSPL provide high satisfaction levels of NFRs.
arXiv Detail & Related papers (2024-07-01T18:51:32Z) - Control and Automation for Industrial Production Storage Zone: Generation of Optimal Route Using Image Processing [49.1574468325115]
This article focuses on developing an industrial automation method for a zone of a production line model using the DIP.
The neo-cascade methodology employed allowed for defining each of the stages in an adequate way, ensuring the inclusion of the relevant methods for its development.
The system was based on the OpenCV library; tool focused on artificial vision, which was implemented on an object-oriented programming (OOP) platform based on Java language.
arXiv Detail & Related papers (2024-03-15T06:50:19Z) - Natural Language Processing for Requirements Formalization: How to
Derive New Approaches? [0.32885740436059047]
We present and discuss principal ideas and state-of-the-art methodologies from the field of NLP.
We discuss two different approaches in detail and highlight the iterative development of rule sets.
The presented methods are demonstrated on two industrial use cases from the automotive and railway domains.
arXiv Detail & Related papers (2023-09-23T05:45:19Z) - A Methodology and Software Architecture to Support
Explainability-by-Design [0.0]
This paper describes Explainability-by-Design, a holistic methodology characterised by proactive measures to include explanation capability in the design of decision-making systems.
The methodology consists of three phases: (A) Explanation Requirement Analysis, (B) Explanation Technical Design, and (C) Explanation Validation.
It was shown that the approach is tractable in terms of development time, which can be as low as two hours per sentence.
arXiv Detail & Related papers (2022-06-13T15:34:29Z) - A Research Agenda for Artificial Intelligence in the Field of Flexible
Production Systems [53.47496941841855]
Production companies face problems when it comes to quickly adapting their production control to fluctuating demands or changing requirements.
Control approaches aiming to encapsulate production functions in the sense of services have shown to be promising in order to increase flexibility of Cyber-Physical Production Systems.
But an existing challenge of such approaches is finding production plans based on provided functionalities for a set of requirements, especially when there is no direct (i.e., syntactic) match between demanded and provided functions.
arXiv Detail & Related papers (2021-12-31T14:38:31Z) - Solving Multistage Stochastic Linear Programming via Regularized Linear
Decision Rules: An Application to Hydrothermal Dispatch Planning [77.34726150561087]
We propose a novel regularization scheme for linear decision rules (LDR) based on the AdaSO (adaptive least absolute shrinkage and selection operator)
Experiments show that the overfit threat is non-negligible when using the classical non-regularized LDR to solve MSLP.
For the LHDP problem, our analysis highlights the following benefits of the proposed framework in comparison to the non-regularized benchmark.
arXiv Detail & Related papers (2021-10-07T02:36:14Z) - Towards Standardizing Reinforcement Learning Approaches for Stochastic
Production Scheduling [77.34726150561087]
reinforcement learning can be used to solve scheduling problems.
Existing studies rely on (sometimes) complex simulations for which the code is unavailable.
There is a vast array of RL designs to choose from.
standardization of model descriptions - both production setup and RL design - and validation scheme are a prerequisite.
arXiv Detail & Related papers (2021-04-16T16:07:10Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
We propose a model-free RL algorithm that enables the use of Linear Temporal Logic (LTL) to formulate a goal for unknown continuous-state/action Markov Decision Processes (MDPs)
The algorithm is guaranteed to synthesise a control policy whose traces satisfy the specification with maximal probability.
arXiv Detail & Related papers (2019-02-02T20:09:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.