Autonomous Vehicles an overview on system, cyber security, risks,
issues, and a way forward
- URL: http://arxiv.org/abs/2309.14213v1
- Date: Mon, 25 Sep 2023 15:19:09 GMT
- Title: Autonomous Vehicles an overview on system, cyber security, risks,
issues, and a way forward
- Authors: Md Aminul Islam (1), Sarah Alqahtani,(2) ((1) Oxford Brookes
University, UK, (2) Oxford Brookes University, UK)
- Abstract summary: This chapter explores the complex realm of autonomous cars, analyzing their fundamental components and operational characteristics.
The primary focus of this investigation lies in the realm of cybersecurity, specifically in the context of autonomous vehicles.
A comprehensive analysis will be conducted to explore various risk management solutions aimed at protecting these vehicles from potential threats.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This chapter explores the complex realm of autonomous cars, analyzing their
fundamental components and operational characteristics. The initial phase of
the discussion is elucidating the internal mechanics of these automobiles,
encompassing the crucial involvement of sensors, artificial intelligence (AI)
identification systems, control mechanisms, and their integration with
cloud-based servers within the framework of the Internet of Things (IoT). It
delves into practical implementations of autonomous cars, emphasizing their
utilization in forecasting traffic patterns and transforming the dynamics of
transportation. The text also explores the topic of Robotic Process Automation
(RPA), illustrating the impact of autonomous cars on different businesses
through the automation of tasks. The primary focus of this investigation lies
in the realm of cybersecurity, specifically in the context of autonomous
vehicles. A comprehensive analysis will be conducted to explore various risk
management solutions aimed at protecting these vehicles from potential threats
including ethical, environmental, legal, professional, and social dimensions,
offering a comprehensive perspective on their societal implications. A
strategic plan for addressing the challenges and proposing strategies for
effectively traversing the complex terrain of autonomous car systems,
cybersecurity, hazards, and other concerns are some resources for acquiring an
understanding of the intricate realm of autonomous cars and their ramifications
in contemporary society, supported by a comprehensive compilation of resources
for additional investigation.
Keywords: RPA, Cyber Security, AV, Risk, Smart Cars
Related papers
- A Survey on Adversarial Robustness of LiDAR-based Machine Learning Perception in Autonomous Vehicles [0.0]
This survey focuses on the intersection of Adversarial Machine Learning (AML) and autonomous systems.
We comprehensively explore the threat landscape, encompassing cyber-attacks on sensors and adversarial perturbations.
This paper endeavors to present a concise overview of the challenges and advances in securing autonomous driving systems against adversarial threats.
arXiv Detail & Related papers (2024-11-21T01:26:52Z) - Exploring the Interplay Between Video Generation and World Models in Autonomous Driving: A Survey [61.39993881402787]
World models and video generation are pivotal technologies in the domain of autonomous driving.
This paper investigates the relationship between these two technologies.
By analyzing the interplay between video generation and world models, this survey identifies critical challenges and future research directions.
arXiv Detail & Related papers (2024-11-05T08:58:35Z) - Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
We propose a comprehensive approach to explore and analyze the causality of end-to-end autonomous driving.
Our work is the first to unveil the mystery of end-to-end autonomous driving and turn the black box into a white one.
arXiv Detail & Related papers (2024-07-09T04:56:11Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
This paper evaluates the inherent risks in autonomous driving by examining the current landscape of AVs.
We develop specific claims highlighting the delicate balance between the advantages of AVs and potential security challenges in real-world scenarios.
arXiv Detail & Related papers (2024-05-14T09:42:21Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - REACT: Autonomous Intrusion Response System for Intelligent Vehicles [1.5862483908050367]
This paper proposes a dynamic intrusion response system integrated within the vehicle.
The system offers a comprehensive list of potential responses, a methodology for response evaluation, and various response selection methods.
The evaluation highlights the system's adaptability, its ability to respond swiftly, its minimal memory footprint, and its capacity for dynamic system parameter adjustments.
arXiv Detail & Related papers (2024-01-09T19:34:59Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
Large language models (LLMs) have demonstrated abilities including understanding context, logical reasoning, and generating answers.
In this paper, we systematically review a research line about textitLarge Language Models for Autonomous Driving (LLM4AD).
arXiv Detail & Related papers (2023-11-02T07:23:33Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Roadmap for Cybersecurity in Autonomous Vehicles [3.577310844634503]
We discuss major automotive cyber-attacks over the past decade and present state-of-the-art solutions that leverage artificial intelligence (AI)
We propose a roadmap towards building secure autonomous vehicles and highlight key open challenges that need to be addressed.
arXiv Detail & Related papers (2022-01-19T16:42:18Z) - Towards Safe, Explainable, and Regulated Autonomous Driving [11.043966021881426]
We propose a framework that integrates autonomous control, explainable AI (XAI), and regulatory compliance.
We describe relevant XAI approaches that can help achieve the goals of the framework.
arXiv Detail & Related papers (2021-11-20T05:06:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.