Toward a physically motivated notion of Gaussian complexity geometry
- URL: http://arxiv.org/abs/2309.14418v2
- Date: Thu, 11 Jul 2024 22:32:01 GMT
- Title: Toward a physically motivated notion of Gaussian complexity geometry
- Authors: Bruno de S. L. Torres, Eduardo Martín-Martínez,
- Abstract summary: We present a construction of a geometric notion of circuit complexity for Gaussian states.
We show how to account for time-reversal symmetry breaking in measures of complexity.
This establishes a first step towards building a quantitative, geometric notion of complexity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a general construction of a geometric notion of circuit complexity for Gaussian states (both bosonic and fermionic) in terms of Riemannian geometry. We lay out general conditions that a Riemannian metric function on the space of Gaussian states should satisfy in order for it to yield a physically reasonable measure of complexity. This general formalism can naturally accommodate modifications to complexity geometries that arise from cost functions that depend nontrivially on the instantaneous state and on the direction on circuit space at each point. We explore these modifications and, as a particular case, we show how to account for time-reversal symmetry breaking in measures of complexity, which is often natural from an experimental (and thermodynamical) perspective, but is absent in commonly studied complexity measures. This establishes a first step towards building a quantitative, geometric notion of complexity that faithfully mimics what is experienced as "easy" or "hard" to implement in a lab from a physically motivated point of view.
Related papers
- Transolver: A Fast Transformer Solver for PDEs on General Geometries [66.82060415622871]
We present Transolver, which learns intrinsic physical states hidden behind discretized geometries.
By calculating attention to physics-aware tokens encoded from slices, Transovler can effectively capture intricate physical correlations.
Transolver achieves consistent state-of-the-art with 22% relative gain across six standard benchmarks and also excels in large-scale industrial simulations.
arXiv Detail & Related papers (2024-02-04T06:37:38Z) - Taming Quantum Time Complexity [45.867051459785976]
We show how to achieve both exactness and thriftiness in the setting of time complexity.
We employ a novel approach to the design of quantum algorithms based on what we call transducers.
arXiv Detail & Related papers (2023-11-27T14:45:19Z) - Unitary Complexity and the Uhlmann Transformation Problem [41.67228730328207]
We introduce a framework for unitary synthesis problems, including notions of reductions and unitary complexity classes.
We use this framework to study the complexity of transforming one entangled state into another via local operations.
Our framework for unitary complexity thus provides new avenues for studying the computational complexity of many natural quantum information processing tasks.
arXiv Detail & Related papers (2023-06-22T17:46:39Z) - On the Complexity of Bayesian Generalization [141.21610899086392]
We consider concept generalization at a large scale in the diverse and natural visual spectrum.
We study two modes when the problem space scales up, and the $complexity$ of concepts becomes diverse.
arXiv Detail & Related papers (2022-11-20T17:21:37Z) - Topological transitions of the generalized Pancharatnam-Berry phase [55.41644538483948]
We show that geometric phases can be induced by a sequence of generalized measurements implemented on a single qubit.
We demonstrate and study this transition experimentally employing an optical platform.
Our protocol can be interpreted in terms of environment-induced geometric phases.
arXiv Detail & Related papers (2022-11-15T21:31:29Z) - Bounds on quantum evolution complexity via lattice cryptography [0.0]
We address the difference between integrable and chaotic motion in quantum theory as manifested by the complexity of the corresponding evolution operators.
Complexity is understood here as the shortest geodesic distance between the time-dependent evolution operator and the origin within the group of unitaries.
arXiv Detail & Related papers (2022-02-28T16:20:10Z) - How smooth is quantum complexity? [0.0]
The "quantum complexity" of a unitary operator measures the difficulty of its construction from a set of elementary quantum gates.
In this paper, we present a unified perspective on various notions of quantum complexity, viewed as functions on the space of unitary operators.
arXiv Detail & Related papers (2021-06-15T17:58:08Z) - SPANet: Generalized Permutationless Set Assignment for Particle Physics
using Symmetry Preserving Attention [62.43586180025247]
Collisions at the Large Hadron Collider produce variable-size sets of observed particles.
Physical symmetries of decay products complicate assignment of observed particles to decay products.
We introduce a novel method for constructing symmetry-preserving attention networks.
arXiv Detail & Related papers (2021-06-07T18:18:20Z) - Quantum Circuit Complexity of Primordial Perturbations [0.0]
We study the quantum circuit complexity of cosmological perturbations in different models of the early universe.
Our analysis serves to highlight how different models achieve the same end result for the perturbations via different routes.
arXiv Detail & Related papers (2020-12-09T08:30:07Z) - Geometry of Complexity in Conformal Field Theory [0.0]
We initiate quantitative studies of complexity in (1+1)-dimensional conformal field theories.
We embed Fubini-Study state complexity and direct counting of stress tensor insertion in relevant circuits in a unified mathematical language.
arXiv Detail & Related papers (2020-05-05T18:00:14Z) - Aspects of The First Law of Complexity [0.0]
We investigate the first law of complexity proposed in arXiv:1903.04511, i.e., the variation of complexity when the target state is perturbed.
Based on Nielsen's geometric approach to quantum circuit complexity, we find the variation only depends on the end of the optimal circuit.
arXiv Detail & Related papers (2020-02-13T21:15:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.