UniBEV: Multi-modal 3D Object Detection with Uniform BEV Encoders for Robustness against Missing Sensor Modalities
- URL: http://arxiv.org/abs/2309.14516v3
- Date: Wed, 8 May 2024 13:53:33 GMT
- Title: UniBEV: Multi-modal 3D Object Detection with Uniform BEV Encoders for Robustness against Missing Sensor Modalities
- Authors: Shiming Wang, Holger Caesar, Liangliang Nan, Julian F. P. Kooij,
- Abstract summary: We propose an end-to-end multi-modal 3D object detection framework designed for robustness against missing modalities.
UniBEV can operate on LiDAR plus camera input, but also on LiDAR-only or camera-only input without retraining.
We compare UniBEV to state-of-the-art BEVFusion and MetaBEV on nuScenes over all sensor input combinations.
- Score: 7.470926069132259
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-sensor object detection is an active research topic in automated driving, but the robustness of such detection models against missing sensor input (modality missing), e.g., due to a sudden sensor failure, is a critical problem which remains under-studied. In this work, we propose UniBEV, an end-to-end multi-modal 3D object detection framework designed for robustness against missing modalities: UniBEV can operate on LiDAR plus camera input, but also on LiDAR-only or camera-only input without retraining. To facilitate its detector head to handle different input combinations, UniBEV aims to create well-aligned Bird's Eye View (BEV) feature maps from each available modality. Unlike prior BEV-based multi-modal detection methods, all sensor modalities follow a uniform approach to resample features from the native sensor coordinate systems to the BEV features. We furthermore investigate the robustness of various fusion strategies w.r.t. missing modalities: the commonly used feature concatenation, but also channel-wise averaging, and a generalization to weighted averaging termed Channel Normalized Weights. To validate its effectiveness, we compare UniBEV to state-of-the-art BEVFusion and MetaBEV on nuScenes over all sensor input combinations. In this setting, UniBEV achieves $52.5 \%$ mAP on average over all input combinations, significantly improving over the baselines ($43.5 \%$ mAP on average for BEVFusion, $48.7 \%$ mAP on average for MetaBEV). An ablation study shows the robustness benefits of fusing by weighted averaging over regular concatenation, and of sharing queries between the BEV encoders of each modality. Our code is available at https://github.com/tudelft-iv/UniBEV.
Related papers
- Robust Multimodal 3D Object Detection via Modality-Agnostic Decoding and Proximity-based Modality Ensemble [15.173314907900842]
Existing 3D object detection methods rely heavily on the LiDAR sensor.
We propose MEFormer to address the LiDAR over-reliance problem.
Our MEFormer achieves state-of-the-art performance of 73.9% NDS and 71.5% mAP in the nuScenes validation set.
arXiv Detail & Related papers (2024-07-27T03:21:44Z) - Diffusion-Based Particle-DETR for BEV Perception [94.88305708174796]
Bird-Eye-View (BEV) is one of the most widely-used scene representations for visual perception in Autonomous Vehicles (AVs)
Recent diffusion-based methods offer a promising approach to uncertainty modeling for visual perception but fail to effectively detect small objects in the large coverage of the BEV.
Here, we address this problem by combining the diffusion paradigm with current state-of-the-art 3D object detectors in BEV.
arXiv Detail & Related papers (2023-12-18T09:52:14Z) - SparseBEV: High-Performance Sparse 3D Object Detection from Multi-Camera
Videos [20.51396212498941]
SparseBEV is a fully sparse 3D object detector that outperforms the dense counterparts.
On the test split of nuScenes, SparseBEV achieves the state-of-the-art performance of 67.5 NDS.
arXiv Detail & Related papers (2023-08-18T02:11:01Z) - Multi-Modal 3D Object Detection by Box Matching [109.43430123791684]
We propose a novel Fusion network by Box Matching (FBMNet) for multi-modal 3D detection.
With the learned assignments between 3D and 2D object proposals, the fusion for detection can be effectively performed by combing their ROI features.
arXiv Detail & Related papers (2023-05-12T18:08:51Z) - MetaBEV: Solving Sensor Failures for BEV Detection and Map Segmentation [104.12419434114365]
In real-world applications, sensor corruptions and failures lead to inferior performances.
We propose a robust framework, called MetaBEV, to address extreme real-world environments.
We show MetaBEV outperforms prior arts by a large margin on both full and corrupted modalities.
arXiv Detail & Related papers (2023-04-19T16:37:17Z) - BEV-MAE: Bird's Eye View Masked Autoencoders for Point Cloud
Pre-training in Autonomous Driving Scenarios [51.285561119993105]
We present BEV-MAE, an efficient masked autoencoder pre-training framework for LiDAR-based 3D object detection in autonomous driving.
Specifically, we propose a bird's eye view (BEV) guided masking strategy to guide the 3D encoder learning feature representation.
We introduce a learnable point token to maintain a consistent receptive field size of the 3D encoder.
arXiv Detail & Related papers (2022-12-12T08:15:03Z) - PersDet: Monocular 3D Detection in Perspective Bird's-Eye-View [26.264139933212892]
Bird's-Eye-View (BEV) is superior to other 3D detectors for autonomous driving and robotics.
transforming image features into BEV necessitates special operators to conduct feature sampling.
We propose detecting objects in perspective BEV -- a new BEV representation that does not require feature sampling.
arXiv Detail & Related papers (2022-08-19T15:19:20Z) - BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation [105.96557764248846]
We introduce BEVFusion, a generic multi-task multi-sensor fusion framework.
It unifies multi-modal features in the shared bird's-eye view representation space.
It achieves 1.3% higher mAP and NDS on 3D object detection and 13.6% higher mIoU on BEV map segmentation, with 1.9x lower cost.
arXiv Detail & Related papers (2022-05-26T17:59:35Z) - M^2BEV: Multi-Camera Joint 3D Detection and Segmentation with Unified
Birds-Eye View Representation [145.6041893646006]
M$2$BEV is a unified framework that jointly performs 3D object detection and map segmentation.
M$2$BEV infers both tasks with a unified model and improves efficiency.
arXiv Detail & Related papers (2022-04-11T13:43:25Z) - RAANet: Range-Aware Attention Network for LiDAR-based 3D Object
Detection with Auxiliary Density Level Estimation [11.180128679075716]
Range-Aware Attention Network (RAANet) is developed for 3D object detection from LiDAR data for autonomous driving.
RAANet extracts more powerful BEV features and generates superior 3D object detections.
Experiments on nuScenes dataset demonstrate that our proposed approach outperforms the state-of-the-art methods for LiDAR-based 3D object detection.
arXiv Detail & Related papers (2021-11-18T04:20:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.