Detecting Sexual Content at the Sentence Level in First Millennium Latin Texts
- URL: http://arxiv.org/abs/2309.14974v3
- Date: Tue, 26 Mar 2024 08:46:07 GMT
- Title: Detecting Sexual Content at the Sentence Level in First Millennium Latin Texts
- Authors: Thibault Clérice,
- Abstract summary: We introduce a novel corpus comprising around 2500 sentences spanning from 300 BCE to 900 CE including sexual semantics.
We evaluate various sentence classification approaches and different input embedding layers, and show that all consistently outperform simple token-based searches.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we propose to evaluate the use of deep learning methods for semantic classification at the sentence level to accelerate the process of corpus building in the field of humanities and linguistics, a traditional and time-consuming task. We introduce a novel corpus comprising around 2500 sentences spanning from 300 BCE to 900 CE including sexual semantics (medical, erotica, etc.). We evaluate various sentence classification approaches and different input embedding layers, and show that all consistently outperform simple token-based searches. We explore the integration of idiolectal and sociolectal metadata embeddings (centuries, author, type of writing), but find that it leads to overfitting. Our results demonstrate the effectiveness of this approach, achieving high precision and true positive rates (TPR) of respectively 70.60% and 86.33% using HAN. We evaluate the impact of the dataset size on the model performances (420 instead of 2013), and show that, while our models perform worse, they still offer a high enough precision and TPR, even without MLM, respectively 69% and 51%. Given the result, we provide an analysis of the attention mechanism as a supporting added value for humanists in order to produce more data.
Related papers
- Splits! A Flexible Dataset and Evaluation Framework for Sociocultural Linguistic Investigation [17.722429998521168]
We introduce Splits!, a 9.7 million-post dataset from Reddit designed for systematic and flexible research.<n>The dataset contains posts from over 53,000 users across 6 demographic groups, organized into 89 discussion topics.<n>We complement this dataset with a framework that leverages efficient retrieval methods to rapidly validate potential Sociocultural Linguistic Phenomena (SLPs)<n>We demonstrate that the two-stage process reduces the number of statistically significant findings requiring manual inspection by a factor of 1.5-1.8x.
arXiv Detail & Related papers (2025-04-06T23:17:07Z) - Leveraging Cross-Attention Transformer and Multi-Feature Fusion for Cross-Linguistic Speech Emotion Recognition [60.58049741496505]
Speech Emotion Recognition (SER) plays a crucial role in enhancing human-computer interaction.
We propose a novel approach HuMP-CAT, which combines HuBERT, MFCC, and prosodic characteristics.
We show that, by fine-tuning the source model with a small portion of speech from the target datasets, HuMP-CAT achieves an average accuracy of 78.75%.
arXiv Detail & Related papers (2025-01-06T14:31:25Z) - Enhancing Authorship Attribution through Embedding Fusion: A Novel Approach with Masked and Encoder-Decoder Language Models [0.0]
We propose a novel framework with textual embeddings from Pre-trained Language Models to distinguish AI-generated and human-authored text.
Our approach utilizes Embedding Fusion to integrate semantic information from multiple Language Models, harnessing their complementary strengths to enhance performance.
arXiv Detail & Related papers (2024-11-01T07:18:27Z) - Evaluating the IWSLT2023 Speech Translation Tasks: Human Annotations, Automatic Metrics, and Segmentation [50.60733773088296]
We conduct a comprehensive human evaluation of the results of several shared tasks from the last International Workshop on Spoken Language Translation (IWSLT 2023)
We propose an effective evaluation strategy based on automatic resegmentation and direct assessment with segment context.
Our analysis revealed that: 1) the proposed evaluation strategy is robust and scores well-correlated with other types of human judgements; 2) automatic metrics are usually, but not always, well-correlated with direct assessment scores; and 3) COMET as a slightly stronger automatic metric than chrF.
arXiv Detail & Related papers (2024-06-06T09:18:42Z) - Evaluating Large Language Models Using Contrast Sets: An Experimental Approach [0.0]
We introduce an innovative technique for generating a contrast set for the Stanford Natural Language Inference dataset.
Our strategy involves the automated substitution of verbs, adverbs, and adjectives with their synonyms to preserve the original meaning of sentences.
This method aims to assess whether a model's performance is based on genuine language comprehension or simply on pattern recognition.
arXiv Detail & Related papers (2024-04-02T02:03:28Z) - ECRC: Emotion-Causality Recognition in Korean Conversation for GCN [0.0]
We propose the emotion-causality recognition in conversation (ECRC) model, which is based on a novel graph structure.
In this study, we overcome the limitations of previous embeddings by utilizing both word- and sentence-level embeddings.
This model uniquely integrates the bidirectional long short-term memory (Bi-LSTM) and graph neural network (GCN) models for Korean conversation analysis.
arXiv Detail & Related papers (2024-03-16T02:07:31Z) - SOUL: Towards Sentiment and Opinion Understanding of Language [96.74878032417054]
We propose a new task called Sentiment and Opinion Understanding of Language (SOUL)
SOUL aims to evaluate sentiment understanding through two subtasks: Review (RC) and Justification Generation (JG)
arXiv Detail & Related papers (2023-10-27T06:48:48Z) - Sensitivity, Performance, Robustness: Deconstructing the Effect of
Sociodemographic Prompting [64.80538055623842]
sociodemographic prompting is a technique that steers the output of prompt-based models towards answers that humans with specific sociodemographic profiles would give.
We show that sociodemographic information affects model predictions and can be beneficial for improving zero-shot learning in subjective NLP tasks.
arXiv Detail & Related papers (2023-09-13T15:42:06Z) - Topics in the Haystack: Extracting and Evaluating Topics beyond
Coherence [0.0]
We propose a method that incorporates a deeper understanding of both sentence and document themes.
This allows our model to detect latent topics that may include uncommon words or neologisms.
We present correlation coefficients with human identification of intruder words and achieve near-human level results at the word-intrusion task.
arXiv Detail & Related papers (2023-03-30T12:24:25Z) - Enabling Classifiers to Make Judgements Explicitly Aligned with Human
Values [73.82043713141142]
Many NLP classification tasks, such as sexism/racism detection or toxicity detection, are based on human values.
We introduce a framework for value-aligned classification that performs prediction based on explicitly written human values in the command.
arXiv Detail & Related papers (2022-10-14T09:10:49Z) - PART: Pre-trained Authorship Representation Transformer [52.623051272843426]
Authors writing documents imprint identifying information within their texts.<n>Previous works use hand-crafted features or classification tasks to train their authorship models.<n>We propose a contrastively trained model fit to learn textbfauthorship embeddings instead of semantics.
arXiv Detail & Related papers (2022-09-30T11:08:39Z) - No Language Left Behind: Scaling Human-Centered Machine Translation [69.28110770760506]
We create datasets and models aimed at narrowing the performance gap between low and high-resource languages.
We propose multiple architectural and training improvements to counteract overfitting while training on thousands of tasks.
Our model achieves an improvement of 44% BLEU relative to the previous state-of-the-art.
arXiv Detail & Related papers (2022-07-11T07:33:36Z) - Few-Shot Cross-lingual Transfer for Coarse-grained De-identification of
Code-Mixed Clinical Texts [56.72488923420374]
Pre-trained language models (LMs) have shown great potential for cross-lingual transfer in low-resource settings.
We show the few-shot cross-lingual transfer property of LMs for named recognition (NER) and apply it to solve a low-resource and real-world challenge of code-mixed (Spanish-Catalan) clinical notes de-identification in the stroke.
arXiv Detail & Related papers (2022-04-10T21:46:52Z) - Enhancing lexical-based approach with external knowledge for Vietnamese
multiple-choice machine reading comprehension [2.5199066832791535]
We construct a dataset which consists of 2,783 pairs of multiple-choice questions and answers based on 417 Vietnamese texts.
We propose a lexical-based MRC method that utilizes semantic similarity measures and external knowledge sources to analyze questions and extract answers from the given text.
Our proposed method achieves 61.81% by accuracy, which is 5.51% higher than the best baseline model.
arXiv Detail & Related papers (2020-01-16T08:09:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.