3D Multiple Object Tracking on Autonomous Driving: A Literature Review
- URL: http://arxiv.org/abs/2309.15411v3
- Date: Fri, 3 Nov 2023 13:15:29 GMT
- Title: 3D Multiple Object Tracking on Autonomous Driving: A Literature Review
- Authors: Peng Zhang, Xin Li, Liang He, Xin Lin
- Abstract summary: 3D multi-object tracking (3D MOT) stands as a pivotal domain within autonomous driving.
Despite its paramount significance, 3D MOT confronts a myriad of formidable challenges.
- Score: 25.568952977339
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D multi-object tracking (3D MOT) stands as a pivotal domain within
autonomous driving, experiencing a surge in scholarly interest and commercial
promise over recent years. Despite its paramount significance, 3D MOT confronts
a myriad of formidable challenges, encompassing abrupt alterations in object
appearances, pervasive occlusion, the presence of diminutive targets, data
sparsity, missed detections, and the unpredictable initiation and termination
of object motion trajectories. Countless methodologies have emerged to grapple
with these issues, yet 3D MOT endures as a formidable problem that warrants
further exploration. This paper undertakes a comprehensive examination,
assessment, and synthesis of the research landscape in this domain, remaining
attuned to the latest developments in 3D MOT while suggesting prospective
avenues for future investigation. Our exploration commences with a systematic
exposition of key facets of 3D MOT and its associated domains, including
problem delineation, classification, methodological approaches, fundamental
principles, and empirical investigations. Subsequently, we categorize these
methodologies into distinct groups, dissecting each group meticulously with
regard to its challenges, underlying rationale, progress, merits, and demerits.
Furthermore, we present a concise recapitulation of experimental metrics and
offer an overview of prevalent datasets, facilitating a quantitative comparison
for a more intuitive assessment. Lastly, our deliberations culminate in a
discussion of the prevailing research landscape, highlighting extant challenges
and charting possible directions for 3D MOT research. We present a structured
and lucid road-map to guide forthcoming endeavors in this field.
Related papers
- A Comprehensive Survey of 3D Dense Captioning: Localizing and Describing
Objects in 3D Scenes [80.20670062509723]
3D dense captioning is an emerging vision-language bridging task that aims to generate detailed descriptions for 3D scenes.
It presents significant potential and challenges due to its closer representation of the real world compared to 2D visual captioning.
Despite the popularity and success of existing methods, there is a lack of comprehensive surveys summarizing the advancements in this field.
arXiv Detail & Related papers (2024-03-12T10:04:08Z) - Recent Advances in Multi-modal 3D Scene Understanding: A Comprehensive
Survey and Evaluation [28.417029383793068]
Multi-modal 3D scene understanding has gained considerable attention due to its wide applications in many areas, such as autonomous driving and human-computer interaction.
introducing an additional modality not only elevates the richness and precision of scene interpretation but also ensures a more robust and resilient understanding.
We present a novel taxonomy that delivers a thorough categorization of existing methods according to modalities and tasks, exploring their respective strengths and limitations.
arXiv Detail & Related papers (2023-10-24T09:39:05Z) - 3D Object Detection for Autonomous Driving: A Comprehensive Survey [48.30753402458884]
3D object detection, which intelligently predicts the locations, sizes, and categories of the critical 3D objects near an autonomous vehicle, is an important part of a perception system.
This paper reviews the advances in 3D object detection for autonomous driving.
arXiv Detail & Related papers (2022-06-19T19:43:11Z) - Recent Advances in Embedding Methods for Multi-Object Tracking: A Survey [71.10448142010422]
Multi-object tracking (MOT) aims to associate target objects across video frames in order to obtain entire moving trajectories.
Embedding methods play an essential role in object location estimation and temporal identity association in MOT.
We first conduct a comprehensive overview with in-depth analysis for embedding methods in MOT from seven different perspectives.
arXiv Detail & Related papers (2022-05-22T06:54:33Z) - Recovering 3D Human Mesh from Monocular Images: A Survey [49.00136388529404]
Estimating human pose and shape from monocular images is a long-standing problem in computer vision.
This survey focuses on the task of monocular 3D human mesh recovery.
arXiv Detail & Related papers (2022-03-03T18:56:08Z) - 3D Object Detection from Images for Autonomous Driving: A Survey [68.33502122185813]
3D object detection from images is one of the fundamental and challenging problems in autonomous driving.
More than 200 works have studied this problem from 2015 to 2021, encompassing a broad spectrum of theories, algorithms, and applications.
We provide the first comprehensive survey of this novel and continuously growing research field, summarizing the most commonly used pipelines for image-based 3D detection.
arXiv Detail & Related papers (2022-02-07T07:12:24Z) - 3D Object Detection for Autonomous Driving: A Survey [14.772968858398043]
3D object detection serves as the core basis of such perception system.
Despite existing efforts, 3D object detection on point clouds is still in its infancy.
Recent state-of-the-art detection methods with their pros and cons are presented.
arXiv Detail & Related papers (2021-06-21T03:17:20Z) - Recent Advances in Monocular 2D and 3D Human Pose Estimation: A Deep
Learning Perspective [69.44384540002358]
We provide a comprehensive and holistic 2D-to-3D perspective to tackle this problem.
We categorize the mainstream and milestone approaches since the year 2014 under unified frameworks.
We also summarize the pose representation styles, benchmarks, evaluation metrics, and the quantitative performance of popular approaches.
arXiv Detail & Related papers (2021-04-23T11:07:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.