E2Net: Resource-Efficient Continual Learning with Elastic Expansion
Network
- URL: http://arxiv.org/abs/2309.16117v1
- Date: Thu, 28 Sep 2023 02:48:13 GMT
- Title: E2Net: Resource-Efficient Continual Learning with Elastic Expansion
Network
- Authors: RuiQi Liu, Boyu Diao, Libo Huang, Zhulin An and Yongjun Xu
- Abstract summary: We propose a resource-efficient continual learning method called the Elastic Expansion Network (E2Net)
E2Net achieves superior average accuracy and diminished forgetting within the same computational and storage constraints.
Our method outperforms competitors in terms of both storage and computational requirements.
- Score: 24.732566251012422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual Learning methods are designed to learn new tasks without erasing
previous knowledge. However, Continual Learning often requires massive
computational power and storage capacity for satisfactory performance. In this
paper, we propose a resource-efficient continual learning method called the
Elastic Expansion Network (E2Net). Leveraging core subnet distillation and
precise replay sample selection, E2Net achieves superior average accuracy and
diminished forgetting within the same computational and storage constraints,
all while minimizing processing time. In E2Net, we propose Representative
Network Distillation to identify the representative core subnet by assessing
parameter quantity and output similarity with the working network, distilling
analogous subnets within the working network to mitigate reliance on rehearsal
buffers and facilitating knowledge transfer across previous tasks. To enhance
storage resource utilization, we then propose Subnet Constraint Experience
Replay to optimize rehearsal efficiency through a sample storage strategy based
on the structures of representative networks. Extensive experiments conducted
predominantly on cloud environments with diverse datasets and also spanning the
edge environment demonstrate that E2Net consistently outperforms
state-of-the-art methods. In addition, our method outperforms competitors in
terms of both storage and computational requirements.
Related papers
- PSE-Net: Channel Pruning for Convolutional Neural Networks with Parallel-subnets Estimator [16.698190973547362]
We introduce PSE-Net, a novel parallel-subnets estimator for efficient channel pruning.
Our proposed algorithm facilitates the efficiency of supernet training.
We develop a prior-distributed-based sampling algorithm to boost the performance of classical evolutionary search.
arXiv Detail & Related papers (2024-08-29T03:20:43Z) - Device Sampling and Resource Optimization for Federated Learning in Cooperative Edge Networks [17.637761046608]
Federated learning (FedL) distributes machine learning (ML) across worker devices by having them train local models that are periodically aggregated by a server.
FedL ignores two important characteristics of contemporary wireless networks: (i) the network may contain heterogeneous communication/computation resources, and (ii) there may be significant overlaps in devices' local data distributions.
We develop a novel optimization methodology that jointly accounts for these factors via intelligent device sampling complemented by device-to-device (D2D) offloading.
arXiv Detail & Related papers (2023-11-07T21:17:59Z) - BiFSMNv2: Pushing Binary Neural Networks for Keyword Spotting to
Real-Network Performance [54.214426436283134]
Deep neural networks, such as the Deep-FSMN, have been widely studied for keyword spotting (KWS) applications.
We present a strong yet efficient binary neural network for KWS, namely BiFSMNv2, pushing it to the real-network accuracy performance.
We highlight that benefiting from the compact architecture and optimized hardware kernel, BiFSMNv2 can achieve an impressive 25.1x speedup and 20.2x storage-saving on edge hardware.
arXiv Detail & Related papers (2022-11-13T18:31:45Z) - Searching for Network Width with Bilaterally Coupled Network [75.43658047510334]
We introduce a new supernet called Bilaterally Coupled Network (BCNet) to address this issue.
In BCNet, each channel is fairly trained and responsible for the same amount of network widths, thus each network width can be evaluated more accurately.
We propose the first open-source width benchmark on macro structures named Channel-Bench-Macro for the better comparison of width search algorithms.
arXiv Detail & Related papers (2022-03-25T15:32:46Z) - CONetV2: Efficient Auto-Channel Size Optimization for CNNs [35.951376988552695]
This work introduces a method that is efficient in computationally constrained environments by examining the micro-search space of channel size.
In tackling channel-size optimization, we design an automated algorithm to extract the dependencies within different connected layers of the network.
We also introduce a novel metric that highly correlates with test accuracy and enables analysis of individual network layers.
arXiv Detail & Related papers (2021-10-13T16:17:19Z) - BCNet: Searching for Network Width with Bilaterally Coupled Network [56.14248440683152]
We introduce a new supernet called Bilaterally Coupled Network (BCNet) to address this issue.
In BCNet, each channel is fairly trained and responsible for the same amount of network widths, thus each network width can be evaluated more accurately.
Our method achieves state-of-the-art or competing performance over other baseline methods.
arXiv Detail & Related papers (2021-05-21T18:54:03Z) - Compact CNN Structure Learning by Knowledge Distillation [34.36242082055978]
We propose a framework that leverages knowledge distillation along with customizable block-wise optimization to learn a lightweight CNN structure.
Our method results in a state of the art network compression while being capable of achieving better inference accuracy.
In particular, for the already compact network MobileNet_v2, our method offers up to 2x and 5.2x better model compression.
arXiv Detail & Related papers (2021-04-19T10:34:22Z) - Dynamic Slimmable Network [105.74546828182834]
We develop a dynamic network slimming regime named Dynamic Slimmable Network (DS-Net)
Our DS-Net is empowered with the ability of dynamic inference by the proposed double-headed dynamic gate.
It consistently outperforms its static counterparts as well as state-of-the-art static and dynamic model compression methods.
arXiv Detail & Related papers (2021-03-24T15:25:20Z) - High-Capacity Expert Binary Networks [56.87581500474093]
Network binarization is a promising hardware-aware direction for creating efficient deep models.
Despite its memory and computational advantages, reducing the accuracy gap between binary models and their real-valued counterparts remains an unsolved challenging research problem.
We propose Expert Binary Convolution, which, for the first time, tailors conditional computing to binary networks by learning to select one data-specific expert binary filter at a time conditioned on input features.
arXiv Detail & Related papers (2020-10-07T17:58:10Z) - ReActNet: Towards Precise Binary Neural Network with Generalized
Activation Functions [76.05981545084738]
We propose several ideas for enhancing a binary network to close its accuracy gap from real-valued networks without incurring any additional computational cost.
We first construct a baseline network by modifying and binarizing a compact real-valued network with parameter-free shortcuts.
We show that the proposed ReActNet outperforms all the state-of-the-arts by a large margin.
arXiv Detail & Related papers (2020-03-07T02:12:02Z) - Energy-efficient and Robust Cumulative Training with Net2Net
Transformation [2.4283778735260686]
We propose a cumulative training strategy that achieves training computational efficiency without incurring large accuracy loss.
We achieve this by first training a small network on a small subset of the original dataset, and then gradually expanding the network.
Experiments demonstrate that compared with training from scratch, cumulative training yields 2x reduction in computational complexity.
arXiv Detail & Related papers (2020-03-02T21:44:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.