UVL2: A Unified Framework for Video Tampering Localization
- URL: http://arxiv.org/abs/2309.16126v2
- Date: Thu, 5 Sep 2024 04:48:35 GMT
- Title: UVL2: A Unified Framework for Video Tampering Localization
- Authors: Pengfei Pei,
- Abstract summary: Malicious video tampering can lead to public misunderstanding, property losses, and legal disputes.
This paper proposes an effective video tampering localization network that significantly improves the detection performance of video inpainting and splicing.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advancement of deep learning-driven video editing technology, security risks have emerged. Malicious video tampering can lead to public misunderstanding, property losses, and legal disputes. Currently, detection methods are mostly limited to specific datasets, with limited detection performance for unknown forgeries, and lack of robustness for processed data. This paper proposes an effective video tampering localization network that significantly improves the detection performance of video inpainting and splicing by extracting more generalized features of forgery traces. Considering the inherent differences between tampered videos and original videos, such as edge artifacts, pixel distribution, texture features, and compress information, we have specifically designed four modules to independently extract these features. Furthermore, to seamlessly integrate these features, we employ a two-stage approach utilizing both a Convolutional Neural Network and a Vision Transformer, enabling us to learn these features in a local-to-global manner. Experimental results demonstrate that the method significantly outperforms the existing state-of-the-art methods and exhibits robustness.
Related papers
- Zero-Shot Video Editing through Adaptive Sliding Score Distillation [51.57440923362033]
This study proposes a novel paradigm of video-based score distillation, facilitating direct manipulation of original video content.
We propose an Adaptive Sliding Score Distillation strategy, which incorporates both global and local video guidance to reduce the impact of editing errors.
arXiv Detail & Related papers (2024-06-07T12:33:59Z) - Video Infringement Detection via Feature Disentanglement and Mutual
Information Maximization [51.206398602941405]
We propose to disentangle an original high-dimensional feature into multiple sub-features.
On top of the disentangled sub-features, we learn an auxiliary feature to enhance the sub-features.
Our method achieves 90.1% TOP-100 mAP on the large-scale SVD dataset and also sets the new state-of-the-art on the VCSL benchmark dataset.
arXiv Detail & Related papers (2023-09-13T10:53:12Z) - Video Segmentation Learning Using Cascade Residual Convolutional Neural
Network [0.0]
We propose a novel deep learning video segmentation approach that incorporates residual information into the foreground detection learning process.
Experiments conducted on the Change Detection 2014 and on the private dataset PetrobrasROUTES from Petrobras support the effectiveness of the proposed approach.
arXiv Detail & Related papers (2022-12-20T16:56:54Z) - Multimodal Graph Learning for Deepfake Detection [10.077496841634135]
Existing deepfake detectors face several challenges in achieving robustness and generalization.
We propose a novel framework, namely Multimodal Graph Learning (MGL), that leverages information from multiple modalities.
Our proposed method aims to effectively identify and utilize distinguishing features for deepfake detection.
arXiv Detail & Related papers (2022-09-12T17:17:49Z) - NSNet: Non-saliency Suppression Sampler for Efficient Video Recognition [89.84188594758588]
A novel Non-saliency Suppression Network (NSNet) is proposed to suppress the responses of non-salient frames.
NSNet achieves the state-of-the-art accuracy-efficiency trade-off and presents a significantly faster (2.44.3x) practical inference speed than state-of-the-art methods.
arXiv Detail & Related papers (2022-07-21T09:41:22Z) - Combining Contrastive and Supervised Learning for Video Super-Resolution
Detection [0.0]
We propose a new upscaled-resolution-detection method based on learning of visual representations using contrastive and cross-entropy losses.
Our method effectively detects upscaling even in compressed videos and outperforms the state-of-the-art alternatives.
arXiv Detail & Related papers (2022-05-20T18:58:13Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
We propose a network with attention modules to learn contrastive features for video salient object detection.
A co-attention formulation is utilized to combine the low-level and high-level features.
We show that the proposed method requires less computation, and performs favorably against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-03T17:40:32Z) - Semi-Supervised Action Recognition with Temporal Contrastive Learning [50.08957096801457]
We learn a two-pathway temporal contrastive model using unlabeled videos at two different speeds.
We considerably outperform video extensions of sophisticated state-of-the-art semi-supervised image recognition methods.
arXiv Detail & Related papers (2021-02-04T17:28:35Z) - FOCAL: A Forgery Localization Framework based on Video Coding
Self-Consistency [26.834506269499094]
This paper presents a video forgery localization framework that verifies the self-consistency of coding traces between and within video frames.
The overall framework was validated in two typical forgery scenarios: temporal and spatial splicing.
Experimental results show an improvement to the state-of-the-art on temporal splicing localization and also promising performance in the newly tackled case of spatial splicing.
arXiv Detail & Related papers (2020-08-24T13:55:14Z) - VideoForensicsHQ: Detecting High-quality Manipulated Face Videos [77.60295082172098]
We show how the performance of forgery detectors depends on the presence of artefacts that the human eye can see.
We introduce a new benchmark dataset for face video forgery detection, of unprecedented quality.
arXiv Detail & Related papers (2020-05-20T21:17:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.