Weakly-Supervised Video Anomaly Detection with Snippet Anomalous
Attention
- URL: http://arxiv.org/abs/2309.16309v1
- Date: Thu, 28 Sep 2023 10:03:58 GMT
- Title: Weakly-Supervised Video Anomaly Detection with Snippet Anomalous
Attention
- Authors: Yidan Fan, Yongxin Yu, Wenhuan Lu, Yahong Han
- Abstract summary: We propose an Anomalous Attention mechanism for weakly-supervised anomaly detection.
Our approach takes into account snippet-level encoded features without the supervision of pseudo labels.
- Score: 22.985681654402153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With a focus on abnormal events contained within untrimmed videos, there is
increasing interest among researchers in video anomaly detection. Among
different video anomaly detection scenarios, weakly-supervised video anomaly
detection poses a significant challenge as it lacks frame-wise labels during
the training stage, only relying on video-level labels as coarse supervision.
Previous methods have made attempts to either learn discriminative features in
an end-to-end manner or employ a twostage self-training strategy to generate
snippet-level pseudo labels. However, both approaches have certain limitations.
The former tends to overlook informative features at the snippet level, while
the latter can be susceptible to noises. In this paper, we propose an Anomalous
Attention mechanism for weakly-supervised anomaly detection to tackle the
aforementioned problems. Our approach takes into account snippet-level encoded
features without the supervision of pseudo labels. Specifically, our approach
first generates snippet-level anomalous attention and then feeds it together
with original anomaly scores into a Multi-branch Supervision Module. The module
learns different areas of the video, including areas that are challenging to
detect, and also assists the attention optimization. Experiments on benchmark
datasets XDViolence and UCF-Crime verify the effectiveness of our method.
Besides, thanks to the proposed snippet-level attention, we obtain a more
precise anomaly localization.
Related papers
- Dynamic Erasing Network Based on Multi-Scale Temporal Features for
Weakly Supervised Video Anomaly Detection [103.92970668001277]
We propose a Dynamic Erasing Network (DE-Net) for weakly supervised video anomaly detection.
We first propose a multi-scale temporal modeling module, capable of extracting features from segments of varying lengths.
Then, we design a dynamic erasing strategy, which dynamically assesses the completeness of the detected anomalies.
arXiv Detail & Related papers (2023-12-04T09:40:11Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal.
Recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos.
This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies.
arXiv Detail & Related papers (2023-11-13T02:54:17Z) - A Coarse-to-Fine Pseudo-Labeling (C2FPL) Framework for Unsupervised
Video Anomaly Detection [4.494911384096143]
Detection of anomalous events in videos is an important problem in applications such as surveillance.
We propose a simple-but-effective two-stage pseudo-label generation framework that produces segment-level (normal/anomaly) pseudo-labels.
The proposed coarse-to-fine pseudo-label generator employs carefully-designed hierarchical divisive clustering and statistical hypothesis testing.
arXiv Detail & Related papers (2023-10-26T17:59:19Z) - Exploiting Completeness and Uncertainty of Pseudo Labels for Weakly
Supervised Video Anomaly Detection [149.23913018423022]
Weakly supervised video anomaly detection aims to identify abnormal events in videos using only video-level labels.
Two-stage self-training methods have achieved significant improvements by self-generating pseudo labels.
We propose an enhancement framework by exploiting completeness and uncertainty properties for effective self-training.
arXiv Detail & Related papers (2022-12-08T05:53:53Z) - Anomaly detection in surveillance videos using transformer based
attention model [3.2968779106235586]
This research suggests using a weakly supervised strategy to avoid annotating anomalous segments in training videos.
The proposed framework is validated on real-world dataset i.e. ShanghaiTech Campus dataset.
arXiv Detail & Related papers (2022-06-03T12:19:39Z) - Anomaly Crossing: A New Method for Video Anomaly Detection as
Cross-domain Few-shot Learning [32.0713939637202]
Video anomaly detection aims to identify abnormal events that occurred in videos.
Most previous approaches learn only from normal videos using unsupervised or semi-supervised methods.
We propose a new learning paradigm by making full use of both normal and abnormal videos for video anomaly detection.
arXiv Detail & Related papers (2021-12-12T20:49:38Z) - UBnormal: New Benchmark for Supervised Open-Set Video Anomaly Detection [103.06327681038304]
We propose a supervised open-set benchmark composed of multiple virtual scenes for video anomaly detection.
Unlike existing data sets, we introduce abnormal events annotated at the pixel level at training time.
We show that UBnormal can enhance the performance of a state-of-the-art anomaly detection framework.
arXiv Detail & Related papers (2021-11-16T17:28:46Z) - Weakly Supervised Video Anomaly Detection via Center-guided
Discriminative Learning [25.787860059872106]
Anomaly detection in surveillance videos is a challenging task due to the diversity of anomalous video content and duration.
We propose an anomaly detection framework, called Anomaly Regression Net (AR-Net), which only requires video-level labels in training stage.
Our method yields a new state-of-the-art result for video anomaly detection on ShanghaiTech dataset.
arXiv Detail & Related papers (2021-04-15T06:41:23Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
We propose a novel and robust unsupervised video anomaly detection method by frame prediction with proper design.
Our proposed method obtains the frame-level AUROC score of 88.3% on the CUHK Avenue dataset.
arXiv Detail & Related papers (2020-11-05T11:34:12Z) - A Self-Reasoning Framework for Anomaly Detection Using Video-Level
Labels [17.615297975503648]
Alous event detection in surveillance videos is a challenging and practical research problem among image and video processing community.
We propose a weakly supervised anomaly detection framework based on deep neural networks which is trained in a self-reasoning fashion using only video-level labels.
The proposed framework has been evaluated on publicly available real-world anomaly detection datasets including UCF-crime, ShanghaiTech and Ped2.
arXiv Detail & Related papers (2020-08-27T02:14:15Z) - Self-trained Deep Ordinal Regression for End-to-End Video Anomaly
Detection [114.9714355807607]
We show that applying self-trained deep ordinal regression to video anomaly detection overcomes two key limitations of existing methods.
We devise an end-to-end trainable video anomaly detection approach that enables joint representation learning and anomaly scoring without manually labeled normal/abnormal data.
arXiv Detail & Related papers (2020-03-15T08:44:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.