Sketch2CAD: 3D CAD Model Reconstruction from 2D Sketch using Visual Transformer
- URL: http://arxiv.org/abs/2309.16850v2
- Date: Thu, 20 Feb 2025 16:34:06 GMT
- Title: Sketch2CAD: 3D CAD Model Reconstruction from 2D Sketch using Visual Transformer
- Authors: Hong-Bin Yang,
- Abstract summary: Current 3D reconstruction methods generate outputs in the form of voxels, point clouds, or meshes.
These formats have inherent limitations, such as rough surfaces and distorted structures.
We present a novel 3D reconstruction method designed to overcome these disadvantages by reconstructing CAD-compatible models.
- Score: 0.0
- License:
- Abstract: Current 3D reconstruction methods typically generate outputs in the form of voxels, point clouds, or meshes. However, each of these formats has inherent limitations, such as rough surfaces and distorted structures. Additionally, these data types are not ideal for further manual editing and post-processing. In this paper, we present a novel 3D reconstruction method designed to overcome these disadvantages by reconstructing CAD-compatible models. We trained a visual transformer to predict a "scene descriptor" from a single 2D wire-frame image. This descriptor includes essential information, such as object types and parameters like position, rotation, and size. Using the predicted parameters, a 3D scene can be reconstructed with 3D modeling software that has programmable interfaces, such as Rhino Grasshopper, to build highly editable 3D models in the form of B-rep. To evaluate our proposed model, we created two datasets: one consisting of simple scenes and another with more complex scenes. The test results indicate the model's capability to accurately reconstruct simple scenes while highlighting its difficulties with more complex ones.
Related papers
- Denoising Diffusion via Image-Based Rendering [54.20828696348574]
We introduce the first diffusion model able to perform fast, detailed reconstruction and generation of real-world 3D scenes.
First, we introduce a new neural scene representation, IB-planes, that can efficiently and accurately represent large 3D scenes.
Second, we propose a denoising-diffusion framework to learn a prior over this novel 3D scene representation, using only 2D images.
arXiv Detail & Related papers (2024-02-05T19:00:45Z) - Model2Scene: Learning 3D Scene Representation via Contrastive
Language-CAD Models Pre-training [105.3421541518582]
Current successful methods of 3D scene perception rely on the large-scale annotated point cloud.
We propose Model2Scene, a novel paradigm that learns free 3D scene representation from Computer-Aided Design (CAD) models and languages.
Model2Scene yields impressive label-free 3D object salient detection with an average mAP of 46.08% and 55.49% on the ScanNet and S3DIS datasets, respectively.
arXiv Detail & Related papers (2023-09-29T03:51:26Z) - PlankAssembly: Robust 3D Reconstruction from Three Orthographic Views
with Learnt Shape Programs [24.09764733540401]
We develop a new method to automatically convert 2D line drawings from three orthographic views into 3D CAD models.
We leverage the attention mechanism in a Transformer-based sequence generation model to learn flexible mappings between the input and output.
Our method significantly outperforms existing ones when the inputs are noisy or incomplete.
arXiv Detail & Related papers (2023-08-10T17:59:34Z) - Blocks2World: Controlling Realistic Scenes with Editable Primitives [5.541644538483947]
We present Blocks2World, a novel method for 3D scene rendering and editing.
Our technique begins by extracting 3D parallelepipeds from various objects in a given scene using convex decomposition.
The next stage involves training a conditioned model that learns to generate images from the 2D-rendered convex primitives.
arXiv Detail & Related papers (2023-07-07T21:38:50Z) - MoDA: Modeling Deformable 3D Objects from Casual Videos [84.29654142118018]
We propose neural dual quaternion blend skinning (NeuDBS) to achieve 3D point deformation without skin-collapsing artifacts.
In the endeavor to register 2D pixels across different frames, we establish a correspondence between canonical feature embeddings that encodes 3D points within the canonical space.
Our approach can reconstruct 3D models for humans and animals with better qualitative and quantitative performance than state-of-the-art methods.
arXiv Detail & Related papers (2023-04-17T13:49:04Z) - SECAD-Net: Self-Supervised CAD Reconstruction by Learning Sketch-Extrude
Operations [21.000539206470897]
SECAD-Net is an end-to-end neural network aimed at reconstructing compact and easy-to-edit CAD models.
We show superiority over state-of-the-art alternatives including the closely related method for supervised CAD reconstruction.
arXiv Detail & Related papers (2023-03-19T09:26:03Z) - Self-Supervised Geometry-Aware Encoder for Style-Based 3D GAN Inversion [115.82306502822412]
StyleGAN has achieved great progress in 2D face reconstruction and semantic editing via image inversion and latent editing.
A corresponding generic 3D GAN inversion framework is still missing, limiting the applications of 3D face reconstruction and semantic editing.
We study the challenging problem of 3D GAN inversion where a latent code is predicted given a single face image to faithfully recover its 3D shapes and detailed textures.
arXiv Detail & Related papers (2022-12-14T18:49:50Z) - Disentangled3D: Learning a 3D Generative Model with Disentangled
Geometry and Appearance from Monocular Images [94.49117671450531]
State-of-the-art 3D generative models are GANs which use neural 3D volumetric representations for synthesis.
In this paper, we design a 3D GAN which can learn a disentangled model of objects, just from monocular observations.
arXiv Detail & Related papers (2022-03-29T22:03:18Z) - DensePose 3D: Lifting Canonical Surface Maps of Articulated Objects to
the Third Dimension [71.71234436165255]
We contribute DensePose 3D, a method that can learn such reconstructions in a weakly supervised fashion from 2D image annotations only.
Because it does not require 3D scans, DensePose 3D can be used for learning a wide range of articulated categories such as different animal species.
We show significant improvements compared to state-of-the-art non-rigid structure-from-motion baselines on both synthetic and real data on categories of humans and animals.
arXiv Detail & Related papers (2021-08-31T18:33:55Z) - An Effective Loss Function for Generating 3D Models from Single 2D Image
without Rendering [0.0]
Differentiable rendering is a very successful technique that applies to a Single-View 3D Reconstruction.
Currents use losses based on pixels between a rendered image of some 3D reconstructed object and ground-truth images from given matched viewpoints to optimise parameters of the 3D shape.
We propose a novel effective loss function that evaluates how well the projections of reconstructed 3D point clouds cover the ground truth object's silhouette.
arXiv Detail & Related papers (2021-03-05T00:02:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.