On Generating Explanations for Reinforcement Learning Policies: An Empirical Study
- URL: http://arxiv.org/abs/2309.16960v3
- Date: Mon, 14 Oct 2024 00:44:36 GMT
- Title: On Generating Explanations for Reinforcement Learning Policies: An Empirical Study
- Authors: Mikihisa Yuasa, Huy T. Tran, Ramavarapu S. Sreenivas,
- Abstract summary: We introduce a set of textitlinear temporal logic formulae designed to provide explanations for policies.
Our focus is on explanations that elucidate both the ultimate objectives accomplished by the policy and the prerequisite conditions it upholds throughout its execution.
- Score: 2.3418061477154786
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Understanding a \textit{reinforcement learning} policy, which guides state-to-action mappings to maximize rewards, necessitates an accompanying explanation for human comprehension. In this paper, we introduce a set of \textit{linear temporal logic} formulae designed to provide explanations for policies, and an algorithm for searching through those formulae for the one that best explains a given policy. Our focus is on explanations that elucidate both the ultimate objectives accomplished by the policy and the prerequisite conditions it upholds throughout its execution. The effectiveness of our proposed approach is illustrated through a simulated game of capture-the-flag and a car-parking environment,
Related papers
- Explanatory Summarization with Discourse-Driven Planning [58.449423507036414]
We present a plan-based approach that leverages discourse frameworks to organize summary generation and guide explanatory sentences.
Specifically, we propose two discourse-driven planning strategies, where the plan is conditioned as part of the input or part of the output prefix.
Empirical experiments on three lay summarization datasets show that our approach outperforms existing state-of-the-art methods in terms of summary quality.
arXiv Detail & Related papers (2025-04-27T19:47:36Z) - Few-shot Policy (de)composition in Conversational Question Answering [54.259440408606515]
We propose a neuro-symbolic framework to detect policy compliance using large language models (LLMs) in a few-shot setting.
We show that our approach soundly reasons about policy compliance conversations by extracting sub-questions to be answered, assigning truth values from contextual information, and explicitly producing a set of logic statements from the given policies.
We apply this approach to the popular PCD and conversational machine reading benchmark, ShARC, and show competitive performance with no task-specific finetuning.
arXiv Detail & Related papers (2025-01-20T08:40:15Z) - Learning Rules Explaining Interactive Theorem Proving Tactic Prediction [5.229806149125529]
We represent the problem as an Inductive Logic Programming (ILP) task.
Using the ILP representation we enriched the feature space by encoding additional, computationally expensive properties.
We use this enriched feature space to learn rules explaining when a tactic is applicable to a given proof state.
arXiv Detail & Related papers (2024-11-02T09:18:33Z) - PG-Rainbow: Using Distributional Reinforcement Learning in Policy Gradient Methods [0.0]
We introduce PG-Rainbow, a novel algorithm that incorporates a distributional reinforcement learning framework with a policy gradient algorithm.
We show empirical results that through the integration of reward distribution information into the policy network, the policy agent acquires enhanced capabilities.
arXiv Detail & Related papers (2024-07-18T04:18:52Z) - End-to-End Neuro-Symbolic Reinforcement Learning with Textual Explanations [15.530907808235945]
We present a neuro-symbolic framework for jointly learning structured states and symbolic policies.
We design a pipeline to prompt GPT-4 to generate textual explanations for the learned policies and decisions.
We verify the efficacy of our approach on nine Atari tasks and present GPT-generated explanations for policies and decisions.
arXiv Detail & Related papers (2024-03-19T05:21:20Z) - Representation-Driven Reinforcement Learning [57.44609759155611]
We present a representation-driven framework for reinforcement learning.
By representing policies as estimates of their expected values, we leverage techniques from contextual bandits to guide exploration and exploitation.
We demonstrate the effectiveness of this framework through its application to evolutionary and policy gradient-based approaches.
arXiv Detail & Related papers (2023-05-31T14:59:12Z) - Interpretable Reinforcement Learning with Multilevel Subgoal Discovery [77.34726150561087]
We propose a novel Reinforcement Learning model for discrete environments.
In the model, an agent learns information about environment in the form of probabilistic rules.
No reward function is required for learning; an agent only needs to be given a primary goal to achieve.
arXiv Detail & Related papers (2022-02-15T14:04:44Z) - Constructing a Good Behavior Basis for Transfer using Generalized Policy
Updates [63.58053355357644]
We study the problem of learning a good set of policies, so that when combined together, they can solve a wide variety of unseen reinforcement learning tasks.
We show theoretically that having access to a specific set of diverse policies, which we call a set of independent policies, can allow for instantaneously achieving high-level performance.
arXiv Detail & Related papers (2021-12-30T12:20:46Z) - Goal-Conditioned Reinforcement Learning with Imagined Subgoals [89.67840168694259]
We propose to incorporate imagined subgoals into policy learning to facilitate learning of complex tasks.
Imagined subgoals are predicted by a separate high-level policy, which is trained simultaneously with the policy and its critic.
We evaluate our approach on complex robotic navigation and manipulation tasks and show that it outperforms existing methods by a large margin.
arXiv Detail & Related papers (2021-07-01T15:30:59Z) - Discrete Reasoning Templates for Natural Language Understanding [79.07883990966077]
We present an approach that reasons about complex questions by decomposing them to simpler subquestions.
We derive the final answer according to instructions in a predefined reasoning template.
We show that our approach is competitive with the state-of-the-art while being interpretable and requires little supervision.
arXiv Detail & Related papers (2021-04-05T18:56:56Z) - What Did You Think Would Happen? Explaining Agent Behaviour Through
Intended Outcomes [30.056732656973637]
We present a novel form of explanation for Reinforcement Learning, based around the notion of intended outcome.
These explanations describe the outcome an agent is trying to achieve by its actions.
We provide a simple proof that general methods for post-hoc explanations of this nature are impossible in traditional reinforcement learning.
arXiv Detail & Related papers (2020-11-10T12:05:08Z) - Sequential Explanations with Mental Model-Based Policies [20.64968620536829]
We apply a reinforcement learning framework to provide explanations based on the explainee's mental model.
We conduct novel online human experiments where explanations are selected and presented to participants.
Our results suggest that mental model-based policies may increase interpretability over multiple sequential explanations.
arXiv Detail & Related papers (2020-07-17T14:43:46Z) - Tree-Structured Policy based Progressive Reinforcement Learning for
Temporally Language Grounding in Video [128.08590291947544]
Temporally language grounding in untrimmed videos is a newly-raised task in video understanding.
Inspired by human's coarse-to-fine decision-making paradigm, we formulate a novel Tree-Structured Policy based Progressive Reinforcement Learning framework.
arXiv Detail & Related papers (2020-01-18T15:08:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.