Multi-Resolution Active Learning of Fourier Neural Operators
- URL: http://arxiv.org/abs/2309.16971v4
- Date: Fri, 29 Mar 2024 03:44:48 GMT
- Title: Multi-Resolution Active Learning of Fourier Neural Operators
- Authors: Shibo Li, Xin Yu, Wei Xing, Mike Kirby, Akil Narayan, Shandian Zhe,
- Abstract summary: We propose Multi-Resolution Active learning of FNO (MRA-FNO), which can dynamically select the input functions and resolutions to lower the data cost as much as possible.
Specifically, we propose a probabilistic multi-resolution FNO and use ensemble Monte-Carlo to develop an effective posterior inference algorithm.
We have shown the advantage of our method in several benchmark operator learning tasks.
- Score: 33.63483360957646
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fourier Neural Operator (FNO) is a popular operator learning framework. It not only achieves the state-of-the-art performance in many tasks, but also is efficient in training and prediction. However, collecting training data for the FNO can be a costly bottleneck in practice, because it often demands expensive physical simulations. To overcome this problem, we propose Multi-Resolution Active learning of FNO (MRA-FNO), which can dynamically select the input functions and resolutions to lower the data cost as much as possible while optimizing the learning efficiency. Specifically, we propose a probabilistic multi-resolution FNO and use ensemble Monte-Carlo to develop an effective posterior inference algorithm. To conduct active learning, we maximize a utility-cost ratio as the acquisition function to acquire new examples and resolutions at each step. We use moment matching and the matrix determinant lemma to enable tractable, efficient utility computation. Furthermore, we develop a cost annealing framework to avoid over-penalizing high-resolution queries at the early stage. The over-penalization is severe when the cost difference is significant between the resolutions, which renders active learning often stuck at low-resolution queries and inferior performance. Our method overcomes this problem and applies to general multi-fidelity active learning and optimization problems. We have shown the advantage of our method in several benchmark operator learning tasks. The code is available at https://github.com/shib0li/MRA-FNO.
Related papers
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - Training Artificial Neural Networks by Coordinate Search Algorithm [0.20971479389679332]
We propose an efficient version of the gradient-free Coordinate Search (CS) algorithm for training neural networks.
The proposed algorithm can be used with non-differentiable activation functions and tailored to multi-objective/multi-loss problems.
Finding the optimal values for weights of ANNs is a large-scale optimization problem.
arXiv Detail & Related papers (2024-02-20T01:47:25Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - Greedy Modality Selection via Approximate Submodular Maximization [19.22947539760366]
Multimodal learning considers learning from multi-modality data, aiming to fuse heterogeneous sources of information.
It is not always feasible to leverage all available modalities due to memory constraints.
We study modality selection, intending to efficiently select the most informative and complementary modalities under certain computational constraints.
arXiv Detail & Related papers (2022-10-22T22:07:27Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Deep Multi-Fidelity Active Learning of High-dimensional Outputs [17.370056935194786]
We develop a deep neural network-based multi-fidelity model for learning with high-dimensional outputs.
We then propose a mutual information-based acquisition function that extends the predictive entropy principle.
We show the advantage of our method in several applications of computational physics and engineering design.
arXiv Detail & Related papers (2020-12-02T00:02:31Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
Resource allocation and transceivers in wireless networks are usually designed by solving optimization problems.
In this article, we introduce unsupervised and reinforced-unsupervised learning frameworks for solving both variable and functional optimization problems.
arXiv Detail & Related papers (2020-01-03T11:01:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.